级数Σ((2^n)/n) *x^n(上为正无穷大,下为n=1) 的收敛半径为多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 17:04:59
级数Σ((2^n)/n) *x^n(上为正无穷大,下为n=1) 的收敛半径为多少
x){k-x(.N

级数Σ((2^n)/n) *x^n(上为正无穷大,下为n=1) 的收敛半径为多少
级数Σ((2^n)/n) *x^n(上为正无穷大,下为n=1) 的收敛半径为多少

级数Σ((2^n)/n) *x^n(上为正无穷大,下为n=1) 的收敛半径为多少
设an=(2^n)/n
所以lim(n→∞) |an|^(1/n)
=lim(n→∞) [(2^n)/n]^(1/n)
=lim(n→∞) 2/n^(1/n)
=2
这里lim(n→∞) n^(1/n)=1 求法很多
可以取对数 lim(n→∞)(ln n)/n 罗必塔法则
=lim(n→∞) 1/n/1
=lim(n→∞) 1/n=0
所以lim(n→∞) n^(1/n)=e^0=1
所以lim(n→∞) |an|^(1/n)=2
收敛半径是R=1/2