设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:35:37
x͐]JPrI}N".E A_QֶB[R6%7)Y]ܹI)]A_gΙ=Le98|_=ho8w74L
a" Vn^ T~D?,|G[BܱhV#8G鹹-LϵwȳՁD*kC?|+MF*:lbT1aQٸ*p`@=ɩc]6gl;9sfp5
设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?
设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?
设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?
属于实对称矩阵的不同特征值的特征向量正交
所以用β对等式两边做内积得 x(β,β)=0
由于特征向量β≠0
所以 x = 0
设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?
设α为n阶对称矩阵A的对应于特征值λ的特征向量,求矩阵((P^-1)AP)^T对应于特征值λ的特征向量
实对称矩阵 特征值设A是3阶实对称矩阵 启特征值为1,1,-1,且对应的特征向量为a=(1,1,1)b=(2,2,1)求A=?
设A是秩为1的3阶实对称矩阵,且A的各行元素之和均为2,则A的特征值为?
设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3)T,求A设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3)T,求矩阵A.
线性代数,施密特正交化,课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:1.求出A的全部特征值λ1,λ2,λ3,...,λn;2.对每个特征值λi,求出相
若实对称矩阵A的特征值的绝对值均为1,A为正交矩阵
设3阶实对称矩阵A的特征值为-1,1,1,属于特征值-1的特征向量为a=[0 1 1]^t.
设1为3阶实对称矩阵A的2重特征值,则a的属于1的线性无关的特征向量个数为
设3阶实对称阵A的特征值是1,2,3;矩阵A的对应与特征值1,2的特征向量分别为(-1,-1,1)T,(1,-2,-1)T.求矩阵A
二阶矩阵A是实对称矩阵,特征值分别为1和2,当特征值取1时,特征向量为(1,2)T,求A.
线性代数题:1.设A为3阶方阵,其特征值分别为2,1,0,则|A+2E|=( ).2.设3阶实对称矩阵A的特征值分别为2,1,0,则A为正定,负定还是半正定,半负定?3.设A、B为同阶矩阵,且R(A)=R(B),则可以得出什么结论?A,
设A为可逆对称矩阵,证明 (1)A^(-1)为对称矩阵 (2)A*为对称矩阵
设A是n阶实对称矩阵,证明:(1)A的特征值全是实数;(2)若A为正定矩阵,则A^2也是正定矩阵
设3阶对称矩阵A有特征值2,1,1,对应于2的特征向量为a1=(1;-2;2),求矩阵A
设A为3阶实对称矩阵,A的特征值为1,1,-1.则A的2012次方的值为多少?
工程数学线性代数 关于实对称A为5阶实对称矩阵 其秩为3且A*A=A,则A的特征值为?|2E-3A|A为5阶实对称矩阵 其秩为3且A*A=A,则A的特征值为?|2E-3A|=?
设A为对称矩阵,且|A|≠0,证明:A^-1也为对称矩阵