方程1/(x^2+1)+(x^2+1)/x^2=10/(3x)的实数根

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:30:32
方程1/(x^2+1)+(x^2+1)/x^2=10/(3x)的实数根
x){6m݆qFچPZHa\~OY-O{6uó;mҧ_`gCOv>_dW XbΗ{d RLAF%_D2i';v* +Z+t *m!vWT U`0m:Ϧ/`FH*@j N50ivSM}# #.~qAb4lz w>I .

方程1/(x^2+1)+(x^2+1)/x^2=10/(3x)的实数根
方程1/(x^2+1)+(x^2+1)/x^2=10/(3x)的实数根

方程1/(x^2+1)+(x^2+1)/x^2=10/(3x)的实数根
x不等于0
方程两边都乘以x
x/(x^2+1)+(x^2+1)/x=10/3
设x/(x^2+1)=y
方程变为
y+1/y=10/3
3y^2-10y+3=0
y1=3,y2=1/3
1)x/(x^2+1)=3时,无实数解
2)x/(x^2+1)=1/3时,
x1=(3+根号5)/2,x2=(3-根号5)/2,

貌似不对吧