在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2 证明:SB⊥BC求二面角A-AB-S的大小 求直线AB与平面SBC所成角的正弦值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 07:37:37
xSkO`+oڲI)L\eM0cr~yߖ~/\d_=9< &2r޹V'QB)qʂri P0iBB>BC>Ko,MwS_Dd{{S]oP# E.O7Ä{2f=S% Ş.B>;7s@O։9ޟ\̺nQraY8™㐥DaKv wޑW/-B覛EIo7ݜ;jڅ;@vj* 0i:9zT\<,nK\؁i[_Jɬff:f\|ph\ӭܺ_#|`p{\zkgx%?/N"bWݬP{%H&ʬ6
在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形.∠BAC=90°,O为BC中点,求证SO⊥平面ABC 如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=根号3,SB=根号23,求二面角S-BC-A正切值 ..在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2 证明:SB⊥BC求二面角A-AB-S的大小 求直线AB与平面SBC所成角的正弦值. 在三棱锥S-ABC中,已知AB=AC,O是BC的中点,平面SAO 垂直 平面ABC 求证 角SAB=角SAC 在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的的重心,若BC=6,则PQ的长为 在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的的重心,若BC=6,则PQ的长 在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=根号3,SB=2倍根号2(1)求三棱锥S-ABC的体积(2)求二面角C-SA-B的大小 高一空间几何问题 高手快来帮忙啊~在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90度,且AC=BC=5,SB=5√5.(1)证明:SC⊥BC(2)求侧面SBC与底面ABC所成二面角的大小(3)求三棱锥的体积V 在三棱锥S-ABC中,E,F,G分别是△SBC,△SAC,△SAB的重心.求证:平面EFG//平面ABC 在正三棱锥S-ABC中,侧面SAB,侧面SAC,侧面SBC两两互相垂直,侧棱SA=2根号3,则正三棱S-ABC外接球的表面积是 已知在三棱锥S-ABC中,P,Q分别是△SAC和△SAB的重心,则BC与平面APQ的位置关系是 如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点.求证:(1)SO⊥平面ABC(2)求二面角A-SC-B的余弦值空间有图 求数学帝回答在三棱锥S-ABC中,已知AB=AC O是BC的中点,平面SAO⊥平面ABC求证:角SAB=角SAC 在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,角BAC=90°,O为BC的重点.(1)、证明:SO垂直面ABC.(2)、求二面角A-SC-B的余弦值. 在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=4,SB=4根号2 证明:SB⊥BC求二面角A-AB-S的大小 求直线AB与平面SBC所成角的正弦值. 在三棱锥S-ABC中,侧面SBC垂直底面ABC,角BAC等于90度,侧面SAB与侧面SAC都是边长为2的等边三角形....在三棱锥S-ABC中,侧面SBC垂直底面ABC,角BAC等于90度,侧面SAB与侧面SAC都是边长为2的等边三角形.1)求 在三棱锥S-ABC中,如图,∠SAB=∠SAC=∠ACB=90°,AC=2,BC= 根号13 ,SB=根号 29,求异面直线SC与AB所成的角的余弦值. 在三棱锥S-ABCD中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=√13,SB=√29.(1)证明:SC⊥BC.(2)求侧面SBC与底面ABC所二面角的大小