已知函数{xn}满足X(n+1)=2xn^2+4xn+1,x1=1,求{xn}的通项公式我凑数列算出来答案是2^[3*2^(n-1)-1]+1 但是算错 了,还有这题用不动点法要怎么求?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 03:29:07
xQJ@Sv!KY^Pڴ(҃5jAj۟npwj̼ٙY o/͈Tp{tO
!ha*;T EÓ>L>eG}ҚQ4qgSׇFq{2\ &Ù2qR8oʥWx5Hnsr6cZ=jX]l,Ԗ&)`#DP)spv/ҹ$~s-_%T)CVO^a<ŵ%nB5dҦW9 21{9t}
e$34dlӵ#s}\
已知数列xn满足x1=4 x(n+1)=(xn^2-3)/(2xn-4)(1)求证 xn>3 (2)求证 x(n+1)
数列{xn}满足x1=1,xn+1=3xn+3^n,求xn.已知函数f(x)=2x^2,数列{an}满足a1=3,an+1=f(an),求an.
已知函数f(x)=3x/3+x,数列{xn}满足x1≠0,xn=f[x(n-1)](n≥2,n是正整数)求证{1/xn}是等差数列
已知数列{xn}满足x1=3,x2=x1/2,...,xn=1/2(xn-1+xn-2),n=3,4,...,则xn等于
已知数列xn满足xn-xn^2=sin(xn-1/n),证明xn的趋向正无穷的极限为0
函数f(x)=2x/x+2,设数列{xn}满足X(n+1)=f(Xn),且X1>0,求证:数列{1/Xn}是等差数列
已知数列xn满足x1=4,x(n+1)=(xn^2-3)/(2xn-4)求数列{xn}的通项公式可证得(1)xn>3(2)x(n+1)
高一数学:已知数列xn满足x(n+3)=xn,x(n+2)=(xn+1-xn)的绝对值,若x1=1,x2=a,则数列xn的前2013项和S2013为(a
已知x1≠1,x1>0,xn+1=xn(xn^2+3)/(3xn^2+1)(n∈N),求证:数列{xn}或者对任意正整数n都满足xn不等于xn+1已知x1≠1,x1>0,xn+1=xn(xn^2+3)/(3xn^2+1)(n∈N),求证:数列{xn}或者对任意正整数n都满足xnxn+1
已知数列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(Xn+1),Sn=Y1+Y2+...+Yn,则aSn+Pn=_____
已知f(x)=x/2x+1,满足xn=f(xn-1),(n>1,n∈N*),且x1=f(2),则x10=?
数列与不等式的题目已知数列Xn满足 Xn=-(1/2)Xn-1^2 +Xn-1 +1,1
数列{Xn}满足条件|Xn+1-Xn|≤1/n^2 证明Xn极限的存在
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1
已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1 (用数学归纳法)
已知函数f(x)=3x/x+3,数列{an}满足Xn+1(1是角数)=f(Xn),求证:1/Xn是等差数列
设函数f(x)定义如下表,数列{Xn}(满足X0=5,且对于任意的自然数n,均有Xn+1=f(Xn),求x2011
已知函数f(x)=3x/x+3,数列{xn}的通项由xn=f(xn-1)(n>=2,n属于N+)确定 注:xn-1是xn减去11)求证{1/xn}是等差数列2)当x1=1/2时,求x100