证明:若函数f(x)和g(x)在区间[a,b]上连续,则至少存在一点ξ∈[a,b],使得:(∫ f(x)g(x)dx)=f(ξ)∫ g(x)dx(补充条件:设g(x)>0) .∫ 符号的上下分别为b和a.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 06:23:10
xQANP
6i'0.JL]AnXR,ؠ j0Xh)7OYq{3&tz.%Z 70gkPrGĿN4p%01xනez1]F+n¹Dl$V HqITta䀐t{PO]La>1%*
u*8u0j`?ˡHMN`b;旝jG߅rC6kr{,2/Z[&=s e,by9\eUɳ Aӌ А(
֠*<ߵ[Z}pE|$Cc|\.D!&ZYwx³VP%nf
证明:若函数f(x)和g(x)在区间[a,b]上连续,则至少存在一...
证明 若函数f(x)与g(x)在区间I一致连续,则函数f(x)+g(x)在区间I也一致连续
.设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.证明:
1.若函数f(x)和g(x)在区间D上都是增函数,则函数F(x)=f(x)+g(x)在区间D上是增函数吗?若是,请证明。2.对于函数f(x)在定义域内某个区间D上的任意两个值x1,x2(x1不等于x2),若f(x1)-f(x2)/x1-x2 >0,则函数
证明:若函数f(x)和g(x)在区间[a,b]上连续,则有│ ∫ f(x)dx│≤∫ │f(x)│dx. ∫ 符号的上下分别是b,a
在对称区间(-l,l)上,函数f(x)为偶函数.1.若函数g(x)为偶函数,证明f(x)+g(x)为偶函数.2.若函数g(x)为奇函数,证明f(x)*g(x)为奇函数.
已知a,b是实数,函数f(x)=x^3+ax,g(x)=x^2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在函数区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致.1.设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,
设函数f(x)与g(x)在区间I上有界,试证明函数f(x)+g(x)和f(x)g(x)也都在区间I上有界
设函数f(x).g(x)在区间(a,b)内单调增,证明函数ψ(x)=max{f(x),g(x)}与ω(x)=min{f(x),g(x)}也在(a,b)递增
设函数f(x)·g(x)在区间(a,b)内单调递增,证明函数h(x)=max{f(x),g(x)}与h(x)=min{f(x),g(x)}也在(a,b)递
证明:若函数f(x)和g(x)在区间[a,b]上连续,则至少存在一点ξ∈[a,b],使得:(∫ f(x)g(x)dx)=f(ξ)∫ g(x)dx(补充条件:设g(x)>0) .∫ 符号的上下分别为b和a.
函数的综合运用.已知二次函数f(x)=ax²+bx+c和一次函数g(x)=-bx,其中a、b、c∈R且满足a>b>c,f(1)=0.(1)证明:函数f(x)和g(x)的图象交于不同的两点A、B(2)若函数F(x)=f(x)-g(x)在区间[2,3]上的最
在区间(a,b)内,若f(x)是增函数,g(x)是减函数,则f(x)-g(x)的单调减区间是?
证明,函数f(x)=2x-5/x平方+1在区间(2,3)上至少有一个零点.设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线且f(a)g(b),求证:存在x0∈(a,b)使得f(x0)=g(x0)
已知二次函数f(x)=ax²+bx+c和一次函数g(x)=-bx,其中a、b、c∈R且满足a>b>c,f(1)=0.(1)证明:函数f(x)和g(x)的图象交于不同的两点A、B(2)若函数F(x)=f(x)-g(x)在区间[2,3]上的最小值为9,最大值为2
已知a,b是实数,函数f(x)=x^3+ax,g(x)=x^2+bx,f(x)的导函数的g(x)的导函数,若f导乘g导大于或等于0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致,设a>0,若函数f(x)和g(x)在区间【-1,+∞】上单调性一
证明若在区间(a,b)内有f'(x)=g'(x),则f(x)=g(x)+c怎么证明
函数 (14 11:3:21)已知奇函数f(x)=(x+b)/(x^2+a)的定义域为R,且f(1)=0.51求实数a,b的值2证明函数f(x)在区间(-1,1)上为增函数3若g(x)=3^ -x -f(x),证明g(x)在(-∽,+∽)上有零点