证明,函数f(x)=2x-5/x平方+1在区间(2,3)上至少有一个零点.设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线且f(a)g(b),求证:存在x0∈(a,b)使得f(x0)=g(x0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:43:37
证明,函数f(x)=2x-5/x平方+1在区间(2,3)上至少有一个零点.设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线且f(a)g(b),求证:存在x0∈(a,b)使得f(x0)=g(x0)
xSNPwv%-,`gnZ`ӐR^"{BDjq̝9Xl%\w",Gtx}RA*ࡇ.)CK}\ƒ5ƇfkPDf.]\BZIBu 3b Q&rGqTD,#8ٚ&3nL:u F|,/WjU:7>`*[ %遪ŭas/SQ]</)VTi۝9Aqi$>.(2 vwf+TMzn#ˆ,89I\6 :Ġ3UA6MJX9`۳+ZZ Im=9>яA"?on

证明,函数f(x)=2x-5/x平方+1在区间(2,3)上至少有一个零点.设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线且f(a)g(b),求证:存在x0∈(a,b)使得f(x0)=g(x0)
证明,函数f(x)=2x-5/x平方+1在区间(2,3)上至少有一个零点.
设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线且f(a)g(b),求证:存在x0∈(a,b)使得f(x0)=g(x0)

证明,函数f(x)=2x-5/x平方+1在区间(2,3)上至少有一个零点.设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线且f(a)g(b),求证:存在x0∈(a,b)使得f(x0)=g(x0)
雪璃玥您好,很高兴为您解答!
证明,函数f(x)=2x-5/x平方+1在区间(2,3)上至少有一个零点.
f(2)=-1/50
所以x=2和3时,函数图像一个在x轴上方,一个在x轴下方
而分母不会等于0
所以f(x)在R上是连续的,即没有间断点
所以f(x)在(2,3)一定和x轴有交点
所以在(2,3)上至少有一个零点.
设函数f(x)和g(x)在区间【a,b】上的图像是连续不断地曲线且f(a)g(b),求证:存在x0∈(a,b)使得f(x0)=g(x0)
设F(X)=f(x)-g(x)由题意知F(x)为连续函数且F(a)*F(b)