设n维向量空间V.有一组基αl,α2,…,αn,另外,α1,α1+α2,...,α1+α2+…+αn也是Vn的基.又设向量ξ关于前一组基的坐标是(n,n一1,...2,1).求ξ关于后一组基的坐标
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 01:55:14
x){n_[N]/o {6Ɏ[uncιF:<˞.d6HJOO*yOv6c}XY 3{
b}O[7?n
H i%Aj?5SMR~
d)M[
d4lC0 d@
قT,fBH;NUYgÓKS';v){;.DF 1W ]
设n维向量空间V.有一组基αl,α2,…,αn,另外,α1,α1+α2,...,α1+α2+…+αn也是Vn的基.又设向量ξ关于前一组基的坐标是(n,n一1,...2,1).求ξ关于后一组基的坐标
设a1,a2...an是n维线性空间的一组基,b1,b2...,bs是V的一组向量求解第13题
设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,Tα2,…,Tαs)
设V是一个n维欧式空间,a1,a2,.,am是V中的正交向量组,令:W={α | (a,ai)=0,α∈ V ,i=1,2,...m}证明:W是V的一个子空间证明:W的正交补 =L(a1,12,...an)
设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
设ε1,ε2,∧,εn是线性空间V的一组标准正交基,A是V上的线性变换,满足(Aα,Aβ)=(α,β),证明:Aε1,Aε2,L,Aε3是一组标准正交基.
向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间.
关于线性代数欧氏空间的证明设α1,α2,...αn是欧氏空间V的一组基,证明:如果γ1,γ2∈V使对任一α∈V有(γ1,α) =(γ2,α),那么γ1=γ2.
高等代数 设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一高等代数设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一
设a是n维欧式空间V的一个单位向量,在V上定义变换T为T(x)=x-2(x,a)a,(1)证明T^2=Ev,Ev是V上的单位变换(2)在V中找出一组正交基,使得T在该组基下的矩阵是对角矩阵
设a是n维欧式空间V的一个单位向量,在V上定义变换T为T(x)=x-2(x,a)a,在V中找出一组标准正交基,使T在这组基下的矩阵是对角矩阵还需证明T^2=Ev,Ev是V上的单位变换
设W是n维向量空间V中的一个子空间,且0
判断:设向量空间V的维数是n,则V是n维向量的集合.求详解
e1,e2,...,en是向量空间V的一组基,且向量α1,α2,...,αn能由e1,e2,...,en线性表示,则α1,α2,...,αnA线性无关 B线性相关 C是V上一组基 D以上都不正确
设Ax=0解空间V的维数为n-r,证明:从V中任意取n-r个解向量都是V的基
证明α1,α2,…αn线性无关充分必要条件是任一n维向量都可以由它们线性表示设α1,α2,…αn是一组n维向量,
线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)】(a,ai)^2≤a的模长的平方
1、设B是数域P上n维线性空间V的线性变换,B属于V,若B^(n-1)(a)!=0,B^n(a)=0,证明:a,B(a),B^2(a),……,B^(n-1)(a)是V的一组基,并求B在这组基下的矩阵.