单调函数连续有界问题设函数f(x)在[a,b]上单调,下列两种说法对吗?1.函数f(x)在[a,b]上连续.2.函数f(x)在[a,b]上有界.请详细说明理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:41:52
xRNP4%b\KCte<"i0*H?hW@"aM3s̜sfUҴY/5 ?̟PdV#}/xI&qBSnlٸ9}H>ĝHw#1D!1LXʺR8B>B L*{AH!8UJdyKd8Ƌ.S]2U+gЁK؅"=J>'a-uK]*WKfm-vXLA -ϒˆ)djmrgs%M@ B⠱q/ }VVƼRA†o;C
单调函数连续有界问题设函数f(x)在[a,b]上单调,下列两种说法对吗?1.函数f(x)在[a,b]上连续.2.函数f(x)在[a,b]上有界.请详细说明理由. 设函数f(x)在闭区间(a,b)上连续,则f(x)在开区间[a,b]内一定是() A 单调 B 有界 C 可导 D 可微 设函数f(x)满足lim(x趋向于无穷大)f(x)=f(x0),则函数f(x)在点x0处:间断?连续?单调? 设函数y=f(x)在[a,b]上连续且单调,证明其反函数在相应区间上也连续且单调 设函数f(x)在[a,b]上连续,a 设函数f(x)在[a,b]上连续,a 一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b) 证明:若单调有界函数f(x)可取到f(a).f(b)之间的一切值,则f(x)在[a,b]上连续 在一个区间上的单调函数一定是连续的么那设f(x)是区间【a,b】上的单调函数,且f(a)×f(b)小于0,则f(x)=0,在区间【a,b】上()A,至少有一实根B 至多有一实根C 没有实根D 必有唯一 高数函数导数、极限、单调性综合题设函数f(x)连续,且f'(0)>0,则存在a>0 使得1,对任意的x属于(0,a)都有f(x)>f(0)这是正确的选项2,但为什么推不出f(x)在(0,a)上单调增加的结论呢?3, 设f(x)是定义在R连续的偶函数,且当x>0时,f(x)为单调函数,则满足f(x)=(x+3/x+4) 的所有x 之和为 A.-3 设函数f(x)连续,且f'(x)>0,则存在a>0.使得f(x)在(0,a)内单调递增.这为什么是错的上面是且f'(o)>0,上面打错了 设函数f(x)=x+a/x(a>0).求证:函数f(x)在(根号a,+无穷大)上单调递增;(2...设函数f(x)=x+a/x(a>0).求证:函数f(x)在(根号a,+无穷大)上单调递增;(2)若函数f(x)在(a-2,+无穷大)上单调递增.求a 若单调有界函数f(x),可取到f(a)和f(b)之间的一切值,证明f(x)在[a,b]连续请给出详细的证明方法 一道高数证明题,设函数f(x)在(-∞,+∞)上连续,F(x)=∫(0,x)(x-2t)f(t)dt,试证:若f(x)单调不增,则F(x)单调不减. 急求:函数问题的有关连续的性质设函数f(X)和g(x)在y处不连续,而函数h(x)在y处连续,则函数()在y处必不连续A f(x)+g(x) B f(x)g(x) C f(x)+h(x) D f(x)h(x)注明解题思路 微积分第一章,函数内容设f[x]=xsin1/x,则f[x]?A.关于原点对称 B.单调C.有界 D.为周期函数设f[x]与g[x]在(-∞,+∞)内分别是单调增加和单调减少函数,则f〔g[x〕〕?A为单调增加函数 B 高数证明单调性设函数f(x)在区间[a,b]上连续,在(a,b)内f''(x)>0,证明:φ(x)=[f(x)-f(a)]/(x-a)在(a,b)内单调增