f(x)为连续函数,f(x)=x+2∫(上1下0) f(t)dt ,则f(x)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:10:24
f(x)为连续函数,f(x)=x+2∫(上1下0) f(t)dt ,则f(x)=?
x)KӨ|c׋^}ﳩt@bF:Vk

f(x)为连续函数,f(x)=x+2∫(上1下0) f(t)dt ,则f(x)=?
f(x)为连续函数,f(x)=x+2∫(上1下0) f(t)dt ,则f(x)=?

f(x)为连续函数,f(x)=x+2∫(上1下0) f(t)dt ,则f(x)=?
约定:∫[a,b] 表示求[a,b]区间上的定积分.
设M=∫[0,1]f(t)dt
由f(x)=x+2M 得
M=∫[0,1](x+2M)dt
=((1/2)x^2+2Mx)|[0,1]
=1/2+2M
即 M=1/2+2M
解得 M=-1/2
所以 f(x)=x+2M=x-1
希望对你有点帮助!