我今天等答案哦(数学)已知:x:y:z=3:4:7且 2x-y+z=18求x+2y-z过程啊!结果,分析

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:25:24
我今天等答案哦(数学)已知:x:y:z=3:4:7且 2x-y+z=18求x+2y-z过程啊!结果,分析
xZrI[*#ET2}\iV6s)\$A$ @ ;r?QgDf ^x" .539L"cpM7;ge½,ø:1펺ćzvk?>}uݧOnaf_|]Vx3Wos)1Xq-_1HxT?ۿ?efoSON]'Ǜo {V࿯VoNn_χAro>,^^~.0.[~3巘=[}l_}ׅ3[8_̋Пฟ.|X=XEŅOe;=VDF?}ׯhƹ6OkϏ[qK38n~қK/-̽fBSGW:62CϪl¹ɓ)l 3/!~}>c+`K+87o~q߇ŧ;˥/8KOaŷx4e$izTN)WRnD77.-}rgH dܵo{Xnc_%T#%RvNMmp{=2T=\sUAAr}&XBE*LEd^Q1WY6/2*1K"`=.ˆ.eVjW:rȯRԸ`8v rGQعӵûc>qO#- $́;^+1x e.w!788"Kz:e`Ľ6$˾uziB]]!Lxo+p{ܜ^B1V=ܪ%rzws1\IaV1V_uTtq V} ۈiF fJYWqUnδ-ȱ[GQ־wۤ0[E3 ͫ+ؠ;m/jdc6oW!V۽e &b~H-y D`> ,MrzqCr3sk:CrBVePɏ1`%1Ob<0Fq.7ևB R1[ 19uWjkaӃz# ,jް R3#<+l($1 E.*TagEfYy*c+)3v&C+?G%z (Kg(T}>+6wɁe~/wd_ķw?((0KrmLBdc5pFk gnPg4IU>\!#-< erhihF<^V ҹH*7~B_Ybf2I"i 69@(&0 (YD3nF[`=Xa_m1C%" FnBkgF$+N>$p,xRlKzaK=.&WA^L< fJaCH͆<"9.h%N Lk>uԧ"] 9)jt޻)8i$46-t#jCP֍2D.b$y@Ljۦ>A2M[RΖ^&`ޞ*`Bk%6*n#)m-؊bK75狞 $H+q-ilZ 3 QBVYY@Ҫ |M=n0k}yո4QG@c"pg.$F$ ÝL 3tfi d9p3^Äg$)O<Fg_&5Zgy$>" 416\73K8Ev˙bfƷ([fiˆ A kǁG̐1Q]İ,g嵜(X'z#3kN7Zʖ)VQ,e/`%Xjع$ qO>zw;$(dFUO8@V8 _HTEi*2n8+<2eCh^ᇶ]$aݲ9Yܼ'g7S0޳w=<_S&dôwv|viۅ-n;j˯X,V{8/WV5euF)Sd uCx \$8 j]IXAF|Vߥ8#60:#⭪glS vyHsu}"55*+b,̈˓u;gY'*G ϗ=jBgQм4;~˖(EE"Kj umؿa#@dzk67B~z̹gv C&)m]ob` @WA cRS( W/4}gA@Hn Q~L^LAG WgX6U c%j>;\;,&N+kh;:[ՄO˼ؓ]UJ˦ȚnJq3aaeF䌐1(çL<|fsב}{#X\AC0 hHٴ)S0+̟ZPW튺̛IIeh[ñeIߌ`K55?kM_LanH08mF죀́,ʯVQ X1MK|&m7u_LZ0"{|KIH!QL\tTc86 ] ՙ#fz؀ q˷)"kַloab>e[ APZ@ȬYK"$T.l!kco?vwt(gx_+w2

我今天等答案哦(数学)已知:x:y:z=3:4:7且 2x-y+z=18求x+2y-z过程啊!结果,分析
我今天等答案哦(数学)
已知:
x:y:z=3:4:7
且 2x-y+z=18
求x+2y-z
过程啊!结果,分析

我今天等答案哦(数学)已知:x:y:z=3:4:7且 2x-y+z=18求x+2y-z过程啊!结果,分析
设x、y、z分别为3k、4k、7k
所以6k-4k+7k=18
k=2
所以
x+2y-z=3k+2*4k-7k=4k=4*2=8

x+2y-z=8

X=6 Y=8 Z=14
x+2y-z=8

设x=3k,y=4k,z=7k,代入第二条式子解出k值,即得知x,y,z值,原式可求。

设x=3a y=4a z=7a
6a-4a+7a=18
a=2

不用分别算出来的,式子没求各等于多少
设x=3a,y=4a,z=7a
则x+2y-z=4a
2x-y+z=18=9a
则x+2y-z=18乘以4a/9a=8

设X为3A Y为4A Z为7A
2x-y+z=18
6A-4A+7A=18
A=2
x+2y-z=3A+8A-7A=4A=8

怎样才能学好数学
★怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯...

全部展开

怎样才能学好数学
★怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3 3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的自由王国。

收起

解:
设x=3k,y=4k,z=7k,依题意有,2×3k-4k+7k=18
解得,k=2
所以 x+2y-z=3k+2×4k—7k=6+16-14=8

我今天等答案哦(数学)已知:x:y:z=3:4:7且 2x-y+z=18求x+2y-z过程啊!结果,分析 已知2/x=y/3=z/4,求(x-y+3z)/(3x+2y)在线等答案!速度来..请注意看。。。。是2/x 不是x/2...请务必注意。不然我就不来问了。。 初一数学简单题(x+y+z)(x+y-z)过程!过程答案我都要! 数学难题.高手请解答.20分已知 xyz(x+y+z)=1.求(x+y)(y+z)的最小值.在线等 初一的数学,答案及过程已知:x-y=10,y-z=15,x+z=20,求x²-y²的值 thank you已知x+3y+5z=0,2x+3y+z=0 且x、y、z.都不是0,则(2y-z)(2y+z)除以z的平方等多少? 求数学达人解答,在线等.已知3,X,Y,Z,9成等比数列,则实数y 等于多少?急求答案. 初三数学中考考什么的一道题答案已经知道了我有另一种思路但是求不出谁能帮忙看看(2012•内江)已知三个数x,y,z,满足 xy/ x+y =-2,yz /y+z = 4 /3 ,zx/ z+x =- 4 /3 ,则 xyz xy+xz__________我想的是 yz / 已知:2(√X+√y-1+√z-2)=x+y+z,求x、y、z的值.(注:√数学中的根号) 分式加减法:已知x+y/z=x+z/y=y+z/x(x+y+z≠0),求x+y-z/x+y+z 已知x+y/z=x+z/y=y+z/x(x+y+z≠0),求x+y-z/x+y+z的步骤 已知x+y/z=x+z/y=y+z/x(x+y+z≠0),求x+y-z/x+y+z的步骤 简单的初一数学,快来回答啊,好的给30分,在线等!快!已知x/2=y/3=z/4,且x+y+z=1,示x、y、z的值. 已知2x+3y+z=130,3x+5y+z=180,试求x+2y/z+y+z【在线等高手解方程】 我想问一下有没有一些三连比的题目?例如:已知:x:y=3:4,y:z=6:3,求x:y:z等其他的许多题目,我还需要16道这样的题目,最好再奉献好答案哦! 微分方程(首次积分)已知dx/(e^x+z)=dy/(e^y+z)=dz/(z^2-e^(x+y)),求x,y,z的关系式有括号的地方我都打了,应该不存在歧义答案是x+z*e^(-y)=c1,y+z*e^(-x)=c2(其中*是乘号,z上没有指数)能得到这答案请告诉 已知x/3=y/5=z/4,求x+y+z/y和x+y-z/y-x的值,2种方法.急等. 三元一次方程!急死我了!1、x+y=2 y+z=-3 z+x=52、x+y=3 2x-3y-z=5 x-2y+z=-23、已知x+2y=3z,3x-y=4z.求x与y之比4、x+y=7 y+z=3 z+x-2=0过程!答案我有.好的话追加