求由方程xsiny-ycosx=2确定的隐函数y=yx的导数dy/dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:16:06
求由方程xsiny-ycosx=2确定的隐函数y=yx的导数dy/dx
x){Ϧ|83R29uOz> O>Ҷ~RRaTO v6p;XbNQ@9=`АƂ ׮TUV yV:W;^ @jWP@g_\g tPK= 0ہBP7

求由方程xsiny-ycosx=2确定的隐函数y=yx的导数dy/dx
求由方程xsiny-ycosx=2确定的隐函数y=yx的导数dy/dx

求由方程xsiny-ycosx=2确定的隐函数y=yx的导数dy/dx
对两边求导.
xcosy×dy/dx+siny-dy/dx×cosx+ysinx=0
(xcosy-cosx)dy/dx=-siny-ysinx
所以dy/dx=(-siny-ysinx)/ ( xcosy-cosx ) .

(y×sinX-siny)/(xcosy-cosx)