实数x、y、z满足x+y+z=5,xy+yz+zx=3,则z的最大值是( )13/3∵x+y=5-z ,xy=3-z(x+y)=3-z(5-z)=z的平方-5z+3,∴x、y是关于t的一元二次方程 t的平方-(5-z)t+z的平方-5z+3=0的两实根 (从这里起我就搞不懂了,这个方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 05:15:56
实数x、y、z满足x+y+z=5,xy+yz+zx=3,则z的最大值是( )13/3∵x+y=5-z ,xy=3-z(x+y)=3-z(5-z)=z的平方-5z+3,∴x、y是关于t的一元二次方程 t的平方-(5-z)t+z的平方-5z+3=0的两实根 (从这里起我就搞不懂了,这个方
xT]sF+g2c,$$>AC#Sg%@)8q<&v_vO zd2L {=‰|GvxLro7\3U?p3ӪssPyHY|gU7$Y3QE1gaf 8tI79b=6N1 V+WXMf2GuJq7TP6[E0i#mxK{VkV1u amY3[| $[y[/Y'M5h# o5幉$ID~VKInz0 5Ռ* 2yzΛGw?njuXLH,QP8{=|RرKE7"ɗ!-">cq! G D98IYEui4ޥ}>is)NW<<"Y_G# hهqۤz$w#xh*'44>wvZ tK](oЁs+JL^۲Ϟٗ 4We_U`iV3J&ՙOh?~ƕ\ՙX*-1o,-^ ţzGђ[]@o ߹(jhȈj>CSd) !}A]4@QQV` 1(˒~M%={L* ;ES.1%dtObPF/胖EpՖyO<>Ȯ|*k"7.Nu_

实数x、y、z满足x+y+z=5,xy+yz+zx=3,则z的最大值是( )13/3∵x+y=5-z ,xy=3-z(x+y)=3-z(5-z)=z的平方-5z+3,∴x、y是关于t的一元二次方程 t的平方-(5-z)t+z的平方-5z+3=0的两实根 (从这里起我就搞不懂了,这个方
实数x、y、z满足x+y+z=5,xy+yz+zx=3,则z的最大值是( )
13/3
∵x+y=5-z ,xy=3-z(x+y)=3-z(5-z)=z的平方-5z+3,
∴x、y是关于t的一元二次方程 t的平方-(5-z)t+z的平方-5z+3=0的两实根 (从这里起我就搞不懂了,这个方程是怎么来的呢?)
∵△=(5-z)的平方-4(z的平方-5z+3)≥0,
即3*z的平方-10z-13≤0,(3z-13)(z+1)≤0
∴z≤13/3,当x=y=1/3时,z=13/3
故z的最大值为13/3

实数x、y、z满足x+y+z=5,xy+yz+zx=3,则z的最大值是( )13/3∵x+y=5-z ,xy=3-z(x+y)=3-z(5-z)=z的平方-5z+3,∴x、y是关于t的一元二次方程 t的平方-(5-z)t+z的平方-5z+3=0的两实根 (从这里起我就搞不懂了,这个方
这是韦达定理
你可以将X看成是X1
Y看成是X2
所以X1+X2=5-z=-b/a
X1*X2=z的平方-5z+3=c/a
我们可以随便设一个方程a*t的平方+b*t+c=0
然后把a设为1(设为1是要减少未知量)
就得出关于t的一元二次方程 t的平方-(5-z)t+z的平方-5z+3=0
后面是因为有实根,所以△要≥0

一个方程如果可以t平方-(x-y)+xy=0, 则方程根为x,y.
同样的如果x+y=a, xy=b, 则x,y是方程t的平方-at+b=0的根.
该方程来自于上面的式子.
往下就没有难点了,不再赘述.

解的过程在下面:



收起

韦达定理啊。

韦达定理