设a>0,Xn由下列确定X(n+1)=1/2(Xn+a/Xn)证明lim Xn=根号下a 当n趋近于无穷的时候.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:22:48
xN@_K &4}ug/ ^n^($&0M 0a%9g1V[8֎jS^{ Ep}Ѓ^^\֗k,lv4b#Yrtxd TG8(0Ѱ]
;i[BmhӲiobk5hpv{%?WD_#@YmTpTC;:ԊK0ӀsRZ*$c ܀vw9+aB=w&m"
>CLQ' 3IӑwTO+GK}ЩBY*rBMeuq73)_S
设a>0,Xn由下列确定X(n+1)=1/2(Xn+a/Xn)证明lim Xn=根号下a 当n趋近于无穷的时候.
设a>0,Xn由下列确定X(n+1)=1/2(Xn+a/Xn)证明lim Xn=根号下a 当n趋近于无穷的时候.
设a>0,Xn由下列确定X(n+1)=1/2(Xn+a/Xn)证明lim Xn=根号下a 当n趋近于无穷的时候.
证明X(n+1)单调,有界,极限A
LIMX(n+1)=lim1/2(Xn+a/Xn)
A=1/2(A+a/A)
A=a,
先用归纳法或单调有界先证明数列极限存在,设极限为A。
则limX(n+1)=lim1/2(Xn+a/Xn)=A
即A=1/2(A+a/A)
2A=A+a/A
A=a/A
A的平方=a
因为a>0
所以A即lim Xn=根号下a
先证明Xn有界,因为有界 所以Xn+1=Xn ,得Xn=1/2(Xn+a/Xn) 即可
设a>0,Xn由下列确定X(n+1)=1/2(Xn+a/Xn)证明lim Xn=根号下a 当n趋近于无穷的时候.
数列xn由下列条件确定:x1=a>0,x(n+1)=1/2(xn+2/xn),n∈N.若数列xn的极限存在且大于0,求lim xn答案是√a,为什么?
数列{xn}由下列条件确定:x1=a>0,xn+1=1/2〔xn+a/xn〕,n∈N+⑴证明:对n≥2,总有xn≥√a⑵证明:对n≥2,总有xn≥xn+1以上所有n+1都为x的下标包括条件
已知数列{xn}由下列条件确定:x1=a>0,xn+1=1/2(xn+a/xn)(n∈N+)求证⑴证明:对n≥2,总有xn≥√a⑵证明:对n≥2,总有xn≥xn+1
数列{xn}由下列条件确定:x1=a>0,x(n+1)=1/2*(xn+a/xn),n∈N*,(1)证明:对n≥2,总有xn≥根号a;(2)证明:对n≥2,总有xn≥x(n+1);(3)若数列{xn}的极限存在,且大于零,求limxn的值
设x>0,xn+1=(xn+a/xn)/2,其中a>0,证明lim xn(n趋近于∞)存在,并求之.数列极限
设x>0,xn+1=(xn+a/xn)/2,其中a>0,证明lim xn(n趋近于∞)存在,并求之.数列极限
微积分证明下列数列收敛利用单调数列收敛原理证明下列数列收敛:(1)xn=p0+p1/10+p2/100+...+pn/(10^n)(2)x0=0,x(n+1)=1+sin(xn-1)设数列{xn}由下述递推公式定义:x0=1,x(n+1)=1/(1+xn),(n属于N).证明
已知f(n)=3x/x+3,数列{Xn}的通项由Xn=f(Xn-1)(n≥2、n∈N*)确定,求Xn
设Xn>0,且 lim(X(n+1)/Xn)=A 证明 limXn的n次根号=A
已知函数f(x)=3x/(x+3),数列Xn的通项由Xn=f(Xn-1)确定 求证{1/Xn}是等差数列.
设x0=1,x(n+1)=(xn+2)/(xn+1)(n>=0),证明数列{xn}收敛.
已知函数f(x)=3x/x+3,数列{xn}的通项由xn=f(xn-1)(n>=2,n属于N+)确定 注:xn-1是xn减去11)求证{1/xn}是等差数列2)当x1=1/2时,求x100
证明数列收敛 求极限设X1>0 a>0 且 X(n+1)=1/2(Xn+a/Xn) 求数列{Xn}极限
高数题(极限存在准则,两个重要极限)设数列{xn}由下式给出:X0>0,Xn+1=1/2(Xn+ 1/Xn) (n=1,2,.)证明lim Xn 存在,求其值
已知首项为x1的数列(xn)满足xn+1=(a*xn)/(xn +1) (a 为常数).若对任意的x1不等于1 ,有xn+2=xn 对任意的n属于N(正实数)都成立,求a的值;当a确定后,数列{xn}由其首项x1确定.当a=2,通过对数列{xn
设a>0,{Xn}满足X0>0,Xn+1=1/2(Xn+a/Xn) ,n+1是下标,n=0,1,2...,证明:{Xn}收敛,求(n趋向无穷) lim Xn
急求数列的综合题一直函数f(x)=3x/(x+3) 数列{Xn}的通向由Xn=f(Xn-1)(n>=2 N为整数)确定 (那个n-1 是x的下角标 n也一样) 求证{1/(Xn)} 为等差数列 党x1=1/2时 求x100