关于一致收敛性的讨论讨论一下这个积分的一致收敛性,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:23:25
关于一致收敛性的讨论讨论一下这个积分的一致收敛性,
xSNP~ ŲXFB94+ 3A@D D1lapJ!H{WvD !}G>ή3?Hq,R[)Kv}=ZZK)LT!qchOi&OCjwsDMtFG3,")#JF6QC󔡡4,-ܗ dYN(XDQQ2ґuAUUҰ"b,ք$愨 He,&5YJs "AEHBks6# gfߡ쬕)c5O>2gp~Bk.DSYk soq6 qd7 1wO{^H53h~ zJ

关于一致收敛性的讨论讨论一下这个积分的一致收敛性,
关于一致收敛性的讨论

讨论一下这个积分的一致收敛性,

关于一致收敛性的讨论讨论一下这个积分的一致收敛性,
方法比较常规,就是用Cauchy收敛准则.
关键部分是对y > 0,0 < a < b,估计积分∫{a,b} e^(-yx²) dx的上界:
∫{a,b} e^(-yx²) dx
≤ ∫{a,b} x/a·e^(-yx²) dx (0 < a ≤ x)
= ∫{a,b} -(e^(-yx²))'/(2ya) dx
= (e^(-ya²)-e^(-yb²))/(2ya)
< 1/(2ya).
因此|∫{a,b} e^(-yx²)sin(y) dx|
= |sin(y)|·∫{a,b} e^(-yx²) dx
≤ |sin(y)|/(2ya)
≤ 1/(2a) (|sin(y)| ≤ y).
易见上述不等式对y = 0也成立.
于是对任意ε > 0,存在A = 1/ε,当b > a > A时,对任意y ≥ 0总有:
|∫{a,b} e^(-yx²)sin(y) dx| ≤ 1/(2a) < 1/(2A) = ε/2 < ε.
根据Cauchy收敛准则,含参广义积分∫{1,+∞} e^(-yx²)sin(y) dx对y ≥ 0一致收敛.