验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:08:42
xNPo@ߞcZ*R?qq5QZ.,&\ O{sl5?iupä~9+nex⽸~{zg>x/ϛst\5|m?ZaW2IjwvJVho h%[:ꃣ 42Al3kxC7$BBۜQ$ǘ).(&) #I9PhAS0h!)n\tr҅\l)R
"*)UBh 5]ʹ@A{
验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)
验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)
验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)
验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)
y/x=ln(xy) 求dy/dx(xy-y^2)/(xy+x^2)
求解微分方程 x^2*dy/dx=xy-y^2
求齐次微分方程dy/dx=y^2/xy-x^2
dy/dx=xy/x^2-y^2
dy/dx=1+x+y^2+xy^2
求通解:(xy-x^2)dy=y^2dx
微分方程求解 (x^2y^3+xy)dy=dx
解微分方程 (x^2y^3+xy)dy=dx
x^2+xy+y^3=1,求dy/dx
dy/dx=(x+y^3)/(xy^2)
微分方程求解 (x^2y^3+xy)dy=dx
dy/dx=(x+y^3)/xy^2
常微分方程dy/dx=(x^3+xy^2)/y
dy/dx=y^2/(x-xy)是齐次方程吗
1.dy/dx=(y-x)/(y+x)2.x^2*dy/dx=xy-y^2
dx/(x^2-xy+y^2)=dy/(2y^2-xy)的微分方程
(2x+xy^2)dx+(2y+x^2*y)dy=0