验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:08:42
验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)
xNPo@ߞcZ*R?qq5 QZ.,&\O{sl5?iupä~9+nex⽸~{zg>x/ϛst\5|m?ZaW2IjwvJVho h%[:ꃣ 42Al3kxC7$BBۜQ$ǘ).(&)#I9PhA S0h!)n\tr҅\l)R "*)UBh 5]ʹ@A{

验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)
验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)

验证(x^2-2xy+y^2)dx-(x^2-2xy-y^2)dy是某个二元函数u=u(x,y)的全微分,并求u=u(x,y)