f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f'(0)=0,证明:存在a属于(-1,1)使f'''(a)=3
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 12:55:58
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f'(0)=0,证明:存在a属于(-1,1)使f'''(a)=3
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f'(0)=0,证明:存在a属于(-1,1)使f'''(a)=3
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f'(0)=0,证明:存在a属于(-1,1)使f'''(a)=3
做g(x)=f(x)-1/2*x^3-1/2; 则g(-1)=0,g(1)=0,g'(0)=0;g'''(x)=f'''(x)-3 故只需证明g'''(a)=0;
int_a^bg(x)dx 表示g(x)从a 到b的定积分.不会打符号,抱歉.
0=g(1)-g(-1)=int_-1^1g'(x)dx=g'(1)*1-g'(-1)*(-1)-int_-1^1g''(x)xdx 这步使用了分部积分
=g'(1)+g'(-1)-[int_-1^0g''(x)xdx+int_0^1g''(x)xdx]
=int_0^1g''(x)dx+(-1)(int_-1^0g''(x)dx)-[int_-1^0g''(x)xdx+int_0^1g''(x)xdx]
这步是把g‘表示成g’‘的积分,利用了g'(0)=0;
=int_0^1g''(x)dx-int_0^1g''(-x)dx-[int_0^1g''(-x)(-x)dx+int_0^1g''(x)dx]
这步是变量代换,把积分区域都变成[0,1]
=int_0^1g''(x)(1-x)dx-int_0^1g''(-x)(1-x)dx
=int_0^1[g''(x)-g''(-x)](1-x)dx
记h(x)=[g''(x)-g''(-x)](1-x) 则h(0)=0,h(1)=0; int_0^1h(x)dx=0;
所以h(x)在(0,1)上必然有零点(否则由介值性,h必然恒正或者恒负,从而积分不可能为0)
记b属于(0,1),h(b)=0; 注意到1-b>0;所以g''(b)-g''(-b)=0;
从而由roll定理可知存在a属于(-b,b)属于(-1,1)使得g'''(a)=0;
带入g的定义即知f'''(a)=3;