f(x)在(0,1)上连续,f(0)=f(1)=0,证明必存在f''(x)=2f'(x)/(1-x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 15:27:32
f(x)在(0,1)上连续,f(0)=f(1)=0,证明必存在f''(x)=2f'(x)/(1-x)
xJ@_Tjn74EClM6X<)( Z*P*x)e؜|Pi1cu.tU"NFqs qтtxW4$V AY銦1a\ S;Ɏ}D%"#JEvO19{{~Qb4go\*{N =?N6}Mp W*C"ѲLQ95]eAb 5P̘Cwh+sS0ujed(\,5R,8taƱ4W'Wwk1/K~.U/v?

f(x)在(0,1)上连续,f(0)=f(1)=0,证明必存在f''(x)=2f'(x)/(1-x)
f(x)在(0,1)上连续,f(0)=f(1)=0,证明必存在f''(x)=2f'(x)/(1-x)

f(x)在(0,1)上连续,f(0)=f(1)=0,证明必存在f''(x)=2f'(x)/(1-x)
构造函数(1-x)^2 f'(x)即可,下面是解题步骤: