数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 14:43:06
数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn
xJ@_EdzfStZ00]7u7PQ >0]LҴj!9s.s`4*ny6;Ii1~}NX3[tO/rί/ #F8.z>=WUF1Sjv!b QW]ǞZ} &t ˵}D%R~DAw[1 Ȋ*柳2/lysWmaϯ Xqn@u<6T/ZM[ZYn8c0 {zԉ|IX*~e/[v!Nte> EsB

数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn
数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn

数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn
数列{b‹n›}满足bn=(2n-1)/3ⁿ,求前n项和T‹n›.
T‹n›=(1/3)+(3/3²)+(5/3³)+(7/3⁴)+.+(2n-3)/3ⁿֿ¹+(2n-1)/3ⁿ.(1)
(1/3)T‹n›=(1/3²)+(3/3³)+(5/3⁴)+.+(2n-3)/3ⁿ+(2n-1)/3^(n+1).(2)
(1)-(2)得:(错项相减)
(2/3)T‹n›=(1/3)+2[(1/3²)+(1/3³)+(1/3⁴)+.+(1/3ⁿ)]-(2n-1)/3^(n+1)
=(1/3)+(2/3)[(1/3)+(1/3²)+(1/3³)+(1/3⁴)+.+(1/3ⁿֿ¹)]-(2n-1)/3^(n+1)
=(1/3)+(1/3)[1-(1/3ⁿֿ¹)]-(2n-1)/3^(n+1)
=(2/3)-1/3ⁿ-(2n-1)/3^(n+1)=(2/3)-2(n+1)/3^(n+1)=(2/3)[1-(n+1)/3ⁿ]
∴T‹n›=1-(n+1)/3ⁿ (n=1,2,3,.)

数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn 已知数列{ bn } 满足2b(n+1)= bn + 1/bn ,且bn>1,求{bn}通项公式 若数列bn满足bn=n^2/2^(n+1),证明bn 设数列{bn}满足bn=n^2/2^(n+1),证明:bn 已知数列{bn}满足bn=n^2/3^n,证明:bn≤4/9 已知数列满足{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标已知数列{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标 18、一道数列题已求出数列An=2n.若数列Bn满足B(n+1)=Bn^2-(n-2)Bn+3,Bn大于等于1,证明:Bn大于等于An/2 an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn 已知数列满足an+1-an=2(n属于N*),且a9=17数列{bn}中,bn=3^an,求证数列{bn}是等比数列并...已知数列满足an+1-an=2(n属于N*),且a9=17数列{bn}中,bn=3^an,求证数列{bn}是等比数列并求其前n项和sn 已知数列{bn}满足b1=-1,b(n+1)=bn+(2n-1),求bn 已知数列bn满足bn=b^2n,其前n项和为Tn,求(1-bn)/Tn 若数列bn满足b1=2,且bn+1=bn+2^n+n,求数列bn的通项公式. 若数列{bn}满足:bn+1=bn^2-(n-2)bn + 3,且b1≥1,n∈N*,用数学归纳法证明:bn≥n如题, 数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列. 数列an=(1/2)^n,数列{bn}满足 bn=3+log4an ,设Tn=|b1|+|b2|+...+|bn|,求Tn . 数列{bn}满足b(n+1)=2bn+1,n∈N*且b1=3 求{bn}的通项公式 数列b1=3,bn+1=3bn+2n,求bn通项. 有关数列的数学题.已知数列{bn}满足b1=1,b2=3,b(n+2)=3b(n+1)-2bn.求证数列{b(n+1)-bn}是等比数列,求{bn}的通项公式.