已知f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,求证:存在a属于(0,1),使f`(a)=1(f(a)的导数等于1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 08:17:21
已知f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,求证:存在a属于(0,1),使f`(a)=1(f(a)的导数等于1
xQN@Wɤk`OqtQjR5bōM?# 93>ιw$C!'}hȑPQVkNLd ,"t$pDN0".Q_։CgH.ҵ~4HE:u[D!7H"PJ L/j#$ B, ` San#Q+ؼ~7Y8^<1MTp-la؃jFgB]\2(֜6YZWјK4a=ZeI*ۿ'+oF/

已知f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,求证:存在a属于(0,1),使f`(a)=1(f(a)的导数等于1
已知f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,求证:存在a属于(0,1),使f`(a)=1(f(a)的导数等于1

已知f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,求证:存在a属于(0,1),使f`(a)=1(f(a)的导数等于1
令F(x)=f(x)-x,则F(1/2)=1-1/2=1/2>0,F(1)=0-1=-1<0.F(x)在[1/2,1]上连续,由零点定理,存在一点η∈(1/2,1),使得F(η)=0.
由F(0)=0,F(η)=0,在[0,η]上使用罗尔定理,得存在一点a∈(0,η),使得F'(a)=0.
结论得证!

好难懂