在等腰三角形中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F,以线段AE、BF和AB为边构成一个新三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:34:17
在等腰三角形中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F,以线段AE、BF和AB为边构成一个新三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面
xTNA}y_MI}ƴ/@E avY@Ν]~ =bL{ϹĶԼp{$|xG? s^=Foƒ7^Qx7kS Ld,4F8oRo Բ_-4ZȗuCL:3OKi-`!9VQx"˭U) $tFF8׮e#[tH)9_ޮ|HCn>>!)eYFԯ@fgb6_0yw;62RFiXMlm+{dZ(<ڙh,iTvvqrVXE YC(=b9_I11>F*-EMU$-0M/-['sF/bT:.63J|fh -v1x;em03}8)?+:*itoTx~T ƊVbHTDib -v!;_e&Eۮb*#;"3ĬZ}h&ɭ㶪8b&{ΧؽdXK.Τ C&H  BA"ll5g \tSMa).8@c}I?#'Dn

在等腰三角形中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F,以线段AE、BF和AB为边构成一个新三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面
在等腰三角形中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F,以线段AE、BF和AB为边构成一个新三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG,如果存在点P,能使S△ABC=S△ABG,求∠C的取值范围

在等腰三角形中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F,以线段AE、BF和AB为边构成一个新三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面
CH是 底边 AB的 垂直平分线,所有CH又是 顶角ACB的角平分线 ,易知:AE=AF
所以新三角形 ABG 也是一个等腰三角形.且与 ABG 都一条相等的底 AB.
新等腰三角形ABG和原来的等腰三角形ABC ,面积相等.所以 它们 在AB 上的高相等,即这两个三角全等.
所以AE=AF= AG = AB=BC
也就说是 AEC是一个 以A为顶点的等腰三角形,只有当C是锐角时,这样的等腰三角形才存在.
先想到这里,再想想,你也想想
接着写,只有当AB> AC时,长度等于AC的 线段AE才存在(E落在线段BC上).否则 E会落在CB的延长线了.(你先不用管P点,以A为圆心,AC为半径的圆与BC的交点即E)
而当AB=AC时,ABC是这个正三角形,是60度.而AB>AC时,根据大角对大边原理 角C应大于60度.
所以角的C范围是 60度到 90度,不含端点值.

如图,在等腰三角形ABC中,CH是底边上的高,点P是线段CH(不与点C、H重合)上任意一点,连接AP并延长交..如图,在等腰三角形ABC中,CH是底边上的高,点P是线段CH(不与点C、H重合)上任意一点,连接AP 如图,在等腰三角形ABC中,CH是底边的高,点P是线段CH上不与端点重合的任意一点.如图,在等腰三角形ABC中,CH是底边的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连结BP并延 在等腰三角形ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的的任意一点在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点 连接AP交BC于点E,连接BP交AC于点F.(1)证 轴对称、等腰三角形如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,连结BP交AC于点F.(1)证明:∠CAE=∠CBF(三线合一)(2)证明:AE=BF(△ACE 八年级数学(等腰三角形)快,急,答得好追加!如图所示,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP并延长交BC于点E,连结BP并延长交AC于点F.以线段AE,BF和AB为 在等腰三角形ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点连接AP交BC于点E,连接BP交AC于点F(1)证明:角CAE=角CBF(2)证明:AE=BF 期末检测A 上的一条题目、、、如图,在等腰三角形ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接BP并延长交AC于F.question:以线段AE,BF和AB为边构成一 在等腰三角行ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点 在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点……在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,链接BP交AC于点F(1)以线 在等腰三角形中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F,以线段AE、BF和AB为边构成一个新三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面 如图,在等腰三角形ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于F.(1)角CAF=角CBF 2)AE=BF(3)以线段AE,BF和AB为边构成一个新的三角形ABG( 如图,在三角形abc中,CH是底边ab的高,点p是线段CH上不与端点的任意一点,连接ap,bp,求证:角cab=角cbp如图,在三角形ABC中,CH是底边AB的高,点p是线段CH上不与端点的任意一点,连接AP,BP,求证:角CBP=角CBP. 如图 在等腰△ABC中 CH是底边上的高线 点P是线段CH上不与端点重合的任意一点 连结AP交BC于点E连结BP交AC于点F.﹙1)证明:∠CAE=∠CBF.(2)证明:AE=BF 如图 在等腰△ABC中 CH是底边上的高线 点P是线段CH上不与端点重合的任意一点 连结AP交BC于点E连结BP交AC于点F.﹙1)证明:∠CAE=∠CBF.(2)证明:AE=BF 如图,在等腰△ABC中,CH是底边上的高,P是线段CH上不与端点重合的任意一点,连接AB交BC与点E,连接BP交AC连接BP交AC于点F,求证(1)∠CAE=∠CBF (2)AE=BF第一题已完成,第二题不会,请用等腰三角形的知 如图,在等腰△ABC中,CH是底边是的高线,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接BP并延长交AC与点P (1)证明:角CAP=角CBP (2)证明:AE=BF (3)以线段AE,BF和AB为边构成一个新的 1.如图,在等腰三角形ABC中,底边BC上有任意一点P,则点P到两腰的距离之和等于定长(腰上的高),1.如图,在等腰三角形ABC中,底边BC上有任意一点P,则点P到两腰的距离之和等于定长(腰上的高),即PD+ 如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,AB=5cm,BC=6cm,若P为BC上的一动点,则BP的最小值为()cm.