在自然数1,2,3,…77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 09:18:39
在自然数1,2,3,…77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为
xAn0E`!wDQiI$tC%B!$ lZ+. Īkv7㻐/M|YHtY8WrKTY &FIR84R2COS¹g4<Q!tFsپ<^7C!C4 ůUD[eq%rBWߒQJ[: l"H{=|/3

在自然数1,2,3,…77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为
在自然数1,2,3,…77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为

在自然数1,2,3,…77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为
6*7+1=43.可分为11组数.(1-7),(8-15).(70-77).最多取6组可以找不到相差为7的数.在夺取一个数就可以找到相差为7的数.所以为6*7+1.

在自然数1,2,3,…77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为 30、在自然数1,2,3,…77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为 答案为43,为什么?30、在自然数1,2,3,…77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为 答案为43,为 在自然数1,2,3,…中,任意取出n个不同的数必有两个数的差为7,则n的最小值为 在自然数1,2,3,…中,任意取出n个不同的数必有两个数的差为7,则n的最小值为 有一串自然数1、2、3、…、2011、2012,在这2012个自然数中,任意取出n个自然数,使得其中每两个数的差都不等于4.那么,n的最大取值是多少? 有一串自然数1、2、3、…、2011、2012,在这2012个自然数中,任意取出n个自然数,使得其中每两个数的差都不等于4.那么,n的最大取值是 . 从自然数1,2,…,2010中取出 n个数,使所取的数中任意三个之和能被21整除.求n 的最大值 在自然数1,2,3...,77中,任意取出n个不同的数必有两个数的差为7,则n的最小值为?再麻烦回答者指明下该题属于哪类题, 证明从自然数1,2,3…1989中,最多可取出几个数使得所取出的数中任意三个数之和能被18整除 15.在1,2,3……59,60这60个自然数中,最多能取出_____28____个数,使取出的数中,任意两个不同的数的和都不是7的倍数. 在1、2、3……29、30这30个自然数中,最多能取出——个数 ,使取出的这些中任意两个不同的数的和.都不是九的倍数? 5、在1、2、3、…、30这30个自然数中,最多能取出个数,使取出的数中,任意两个不同的数的和都不是7的倍数. 在1、2、3、…、30这30个自然数中,最多能取出多少个数,使取出的数中,任意两个不同的数的和都不是7的倍 2.不超过300,既和12互质,又和50不互质的自然数个数为( )个.1.从1,2,3,···100这100个自然数中,任意取出n个数,在这n个数中总能找到4个数,它们每两个都互质,求n的最小值 从自然数1 2 3 4.100中,最多可能取出( )个数,使将取出的任意四个自然数之和能被15整除 证明在前2n个自然数中任意取出n+1个数,其中必有2个数互质.用抽屉原理. 从0、1、2、3…2011、2012这2013个自然数中,取出若干个数,要使取出的任意两个数的和都是50的整倍数最多可以取出多少个数? 从自然数1,2,3,…,1989中,最多可取出几个数使索取的数中任意三个数之和能被18整除