已知函数f(x)=x3-3/2ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2 (1).求f(x)的解(2).若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 19:09:27
已知函数f(x)=x3-3/2ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2 (1).求f(x)的解(2).若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围
xV[SF+ 3cҮlt$Ӕ,:1jہpq (!!`l/+O]Ig&t&H{ss=Z-o^uئo vHQ0q8-H}Ҡ{F'䪹K7"o':;ECM0Aگz+\50<`Q@y!PԝO s|՜,KTtArV!;?C׎}OٚOij˜͇Ʊs2Cgmvj^zlnל(ײGR(~Jё}C)Il~rjzMl1~fȔkU௒,d41SdXeEjdfܔiR+0*dPPPe%F EV!rY.j I8f%8VՌԄ3TlVRA K*ɽO!/{ $"],xg[ R@0ltkzel .˯I E#Z5S;pg)91f0c;Y5 dZ_;Rdl4XpRÛŅ!l{l9uOwg " gBӹKF4Daţݙ]zD̍?."+>@O2qC 9?E!zLRAyOGkߝsݺzv1<Qy&Fwas@\JB x~3 l"[D#q[|G/(U=:.mhv B$nS ~/ǹR^ +N0m|M=)}\8Epˏovs q_.aJ|hﶎ貲%(lľzt!, PHR{z6P n-YSӯ'RwDTڍLV˚-:q|3-yݩ̻Aqr/J9XtΫMdg?4@k

已知函数f(x)=x3-3/2ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2 (1).求f(x)的解(2).若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围
已知函数f(x)=x3-3/2ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2 (1).求f(x)的解
(2).若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围

已知函数f(x)=x3-3/2ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2 (1).求f(x)的解(2).若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,求实数m的取值范围
框架清晰若有计算错误可以套改.

(1)f(x)=x^3-3ax^2/2+b
令f'(x)=3x^2-3ax=3x(x-a)=0
有x=0或x=a
∵a>1,
∴当x<0或x>a时,f'(x)>0,f(x)为增函数;
当0所以在区间[-1,1]上,当x=0时,函数f(x)有最大值f(0)=b=1。
f(-1)和f(1)之中的较小值...

全部展开

(1)f(x)=x^3-3ax^2/2+b
令f'(x)=3x^2-3ax=3x(x-a)=0
有x=0或x=a
∵a>1,
∴当x<0或x>a时,f'(x)>0,f(x)为增函数;
当0所以在区间[-1,1]上,当x=0时,函数f(x)有最大值f(0)=b=1。
f(-1)和f(1)之中的较小值为函数的最小值。
f(-1)=-1-3a/2+b=-3a/2
f(1)=1-3a/2+b=2-3a/2
∵a>1,
∴f(-1)函数最小值为f(-1)=-3a/2=-2,a=4/3。
(2)f(x)=x^3-2x^2+1
g(x)=f(x)-mx=x^3-2x^2-mx+1
g'(x)=3x^2-4x-m
∵g(x)在区间[-2,2]上为减函数,
∴g'(x)=3x^2-4x-m<0
函数g'(x)的图象为开口向上的抛物线,要使g'(x)<0,必须使b^2-4ac>0
即16+12m>0,m>-4/3

收起

f'(x)=3x^2-3ax=3x(x-a)
令f'(x)=0
x=0
-1故f(0)=b=1为最大值
f(-1)=-1-(3/2)a+1=-3a/2
f(1)=1-(3/2)a+1=2-3a/2
若f(-1)为最小值,则-3a/2=-2,a=4/3
若f(1)为最小值,则2-3a/2=-2,a=8/...

全部展开

f'(x)=3x^2-3ax=3x(x-a)
令f'(x)=0
x=0
-1故f(0)=b=1为最大值
f(-1)=-1-(3/2)a+1=-3a/2
f(1)=1-(3/2)a+1=2-3a/2
若f(-1)为最小值,则-3a/2=-2,a=4/3
若f(1)为最小值,则2-3a/2=-2,a=8/3(舍)
f(x)=x^3-2x^2+1
(2).若函数g(x)=f(x)-mx在区间[-2,2]上为减函数,
g(x)x^3-2x^2-mx+1
即g'(x)=3x^2-4x-m=0
△=16+12m
易得对称轴为-2≤(x1+x2)/2≤2
所以
x1=(4+√(16+12m))/6≤2
x2=(4-√(16+12m))/6≥-2
x1=(4+√(16+12m))≥12
x2=(4-√(16+12m))≤-12
√(16+12m)≥8
√(16+12m)≥16

m≥20
打了很多字望采纳```可能是手算算错数```过程应该没错的吧``````

收起

已知函数f(x)=x3-3/2ax2+b,a,b为实数,1 已知函数f(x)=x3次方+ax2次方+3bx+c(b 已知函数f(x)=-x3+ax2+b,求函数的单调递增区间 已知函数f(x)=-2/3x3+2ax2+3x,当a=1/4时,求函数 问下关于对数学题的一个疑问已知函数f(x)=x3(立方)+ax2(平方)+3bx+c (b不等于零),且g(x)=f(x)-2是奇函数,求a,c的值g(x)=f(x)-2=x3+ax2+3bx+c-2 g(x)是奇函数 即:g(-x)=-g(x)-x3+ax2-3bx-2=-x3-ax2-3bx+2 整理:ax 设函数f(x)=-1/3x3+2ax2-3a2x+b(0要详细过程.谢谢了, 已知函数f(x)=1/3x3+ax2-bx+1(a,b属于R)在区间[-1,3]上是减函数,则a+b的最小值是? 已知函数f(x)=x3次方+ax2平方+bx+c在x=-2/3与x=1时都取得极值.1.求a ,b 的值; 2、求函数f(x)的单调...已知函数f(x)=x3次方+ax2平方+bx+c在x=-2/3与x=1时都取得极值.1.求a ,b 的值;2、求函数f(x)的单调区间. 已知函数f(x)=x3-3ax2-bx,其中a,b为实数,若f(x)在区间[-1,2]上为减函数,且b=9a,求a的取值范围 已知函数f(x)=x3+3ax2+3x+1 若x属于【2,正无穷】f(x)大于等于0求a的取值范围 已知函数f(x)=x3-ax2+bx+3(a,b∈R),若函数在区间[0,1]上单减,求a2+b2的最小值 已知函数f(x)=1/3x3-ax2+(a2-1)x+b (a,b属于R) ,若y=f(x)已知函数f(x)=1/3x3-ax2+(a2-1)x+b (a,b属于R) ,若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0求在区间[-2,4]上的最大值 设函数f(x)=-1/3x3+2ax2-3a2x+1,0 已知函数f(x)=x3+ax2+bx+c在x-2/3与x1处都取得极值,求b? 9.已知函数f(x)=x3+ax2+bx+c在x=-1与x=2处都取得极值. (Ⅰ)求a,b的值及函9.已知函数f(x)=x3+ax2+bx+c在x=-1与x=2处都取得极值.(Ⅰ)求a,b的值及函数f(x)的单调区间;(Ⅱ)若对x∈[-2,3], 函数的极值 求详解,已知函数f(x)=x3+2x2+x-4,g(x)=ax2+x-8,求函数f(x)的极值 已知函数f(x)=x3+ax2+b的图象在p(1,0)点处的切线与直线3x+y+2=0平行 (1)求a b的值 (2)求函数...已知函数f(x)=x3+ax2+b的图象在p(1,0)点处的切线与直线3x+y+2=0平行 (1)求a b的值 (2)求函数的单调区间 已知函数f(x)=x3+ax2+bx+c且0≤f(-1)=f(-2)=f(-3)≤3,则( )已知函数f(x)=x3+ax2+bx+c且0≤f(-1)=f(-2)=f(-3)≤3,则( )A.c≤3 B .3≤c≤6 C .6≤c≤9 D.c>9