若函数在X0可导,那么是否一定存在某邻域,函数在其中每一点都可导?若函数在X0可导,那么是否一定存在某邻域,函数在这个邻域中每一点都可导?这个命题成立吗?如果成立请给出证明,如果不成
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:56:27
xN@_XwdWCBoP¿j@
A0h4X`Ɲ+8mIՃ'qvͮM{(Y:l=wtj0sH^0zfꌘ]CWgVu*(Gͥ^u,PZ.J;b*\UY
SPA$ ,tIZ߽F27Uw鬺쭼"9ޢX2Ss4Z2RLeOCB%.)".UYNۤFYMd(U-SG6_)u#<憼214XC[QwE;
若函数在X0可导,那么是否一定存在某邻域,函数在其中每一点都可导?若函数在X0可导,那么是否一定存在某邻域,函数在这个邻域中每一点都可导?这个命题成立吗?如果成立请给出证明,如果不成
若函数在X0可导,那么是否一定存在某邻域,函数在其中每一点都可导?
若函数在X0可导,那么是否一定存在某邻域,函数在这个邻域中每一点都可导?这个命题成立吗?如果成立请给出证明,如果不成立,请举出反例.
若函数在X0可导,那么是否一定存在某邻域,函数在其中每一点都可导?若函数在X0可导,那么是否一定存在某邻域,函数在这个邻域中每一点都可导?这个命题成立吗?如果成立请给出证明,如果不成
不成立,例如y=绝对值x,在x=0是不可导,但是其邻域的其他点可导,同理在x属于(0,E),e 为大于0任意值,y可导,但是在x=0处不可导
不成立,如
y=x^2,x为有理数,y=-x^2,x为无理数,则显然y在0点倒数存在且为0,而在0点的任意领域内,由于y不连续,故倒数不存在。
若函数在X0可导,那么是否一定存在某邻域,函数在其中每一点都可导?若函数在X0可导,那么是否一定存在某邻域,函数在这个邻域中每一点都可导?这个命题成立吗?如果成立请给出证明,如果不成
一个函数在某点X0可导且导数为正,则是否一定存在它的一个邻域,在这个邻域内函数是单调上升的?
如果函数 在 处可导,那么是否存在点 的一个邻域,在此邻域内 也一定可导根据左导数和右导数请构造一下
函数某点导数存在 与函数某点 某邻域可导 区别如F(X0) 导数存在 与 F(x) 在X=X0的某邻域可导前者X=X0处导数存在 左导数等于右导数 那么分别趋于 +X0 于 -X0 导数都存在(X0
若函数在一点可导 那么是否存在某邻域使得该函数一定可导/连续?(注意这里有2个要证明)有人这么回答:不成立,例如y=绝对值x,在x=0是不可导,但是其邻域的其他点可导,同理在x属于(0,E),
高数导函数问题书:导函数只可能存在第二类见段点.那么是否可这样认为:若函数在x=x0可导,则导函数在该点一定连续.(若可导跟据定义导函数在x0点左右极限存在且相等,又不可能为第一类间断
关于微积分导数的问题 f(x0)的n阶导数存在,在x=x0的邻域内f(x)是否可导?f(x0)的n阶导数存在是否可以推出在x=x0的邻域内f(x)可导;f(x0)的n阶导数存在可以推出f(x)的n-1阶导数在x=x0的邻域内连续,那
函数在x0的某邻域U有定义 且在x0可导 对任意x f(x)小于等于f(x0) 证明f'(x0)=0函数在x0的某邻域U(x0)有定义 且在x0可导 对任意x属于U,f(x)小于等于f(x0) 证明f'(x0)=0
连续函数的概念与导数1.连续并且可导的函数的导数是否是连续的?在连续的可导的函数上是否存在导数的突变呢?“连续函数的概念:设函数f(x)在点x0的某个邻域内有定义,如果有 lim(x->x0) f(x)=
如果函数在一点可导,则是否存在该点的一个去心邻域也可导?
请教一个高数的函数问题若f(x)在x0点的某邻域内有界且可导,则f'(x)也在此邻域内有界这句话为什么错了啊?谢谢.
在x0的邻域内一阶可导,能否推出一阶导数在x0处连续?如题.注意,我说的是一阶导数是否连续,而不是函数是否连续,
大一数学分析题fx在x0右邻域内连续且在右邻域可导,其导函数从右趋于x0的极限存在,则这个极限等于x0这点的右导数第二题,用泰勒展开求arctgx在零处的n阶导数 紧急呀,
如果lim(x趋于x0)f(x)=3,那么必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有f(x)大于0,为什么
函数可导的充分条件函数f(x)在点x0处的某个邻域有定义,则极限f(x0+2h)-f(x0+h)/h存在不是函数f(x)在点x0处可导的充分条件的原因如:设函数f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充
已知f(x)在x0处连续,且,f(x0)>0,试证存在x0的某邻域,在该邻域内恒有f(x)>f(x0)/2
关于函数可导的问题若一个函数f(x)=x+1 (x0) 问该函数是否为可导函数由度娘:函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等. 但是个人觉得这个f(x)不是
问题是(1)在x=0点是否可导.(2)是否存在x=0的一个邻域,使得f在该邻域内单调.