直线l过抛物线y^2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得线段长为4.则a=急用

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:25:51
直线l过抛物线y^2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得线段长为4.则a=急用
xQJ@&nͧ A_RC(S/PRM7mڨ%5Зٝs朙=|evw Iea :iH}L/5ʽ-+28΋t\,y^D)Ԕ0j5ae=(XEȆt;e\=&-K Ka"pM̈́w2 'Ȇ>4 @yV_0fn"

直线l过抛物线y^2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得线段长为4.则a=急用
直线l过抛物线y^2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得线段长为4.则a=
急用

直线l过抛物线y^2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得线段长为4.则a=急用
y^2=a(x+1)
顶点(-1,0)
此处2p=a,所以顶点到焦点距离=p/2=a/4
a>0,开口向左,所以焦点(-1+a/4,0)
l与x轴垂直
则是x=-1+a/4
代入抛物线
y^2=a(-1+a/4+1)=a^2/4
y=±a/2
所以所截线段长=|a/2-(-a/2)|=4
a=4

焦点为(a/4-1,a/2),所以a=4

直线l过点A(1,—1)并且与抛物线x^2=2y只有一个公共点,求直线l的方程如题! 在平面直角坐标系xOy中,直线l与抛物线y^2=2x相交于A,B两点.求证;直线直线l过点T(3,0)那么在平面直角坐标系xOy中,直线l与抛物线y^2=2x相交于A,B两点.(1 )求证;“如果直线直线l过点T(3,0) 已知抛物线y²=4x,过点p(2,1)作直线l交抛物线于A、B ①若直线l的倾斜角为45已知抛物线y²=4x,过点p(2,1)作直线l交抛物线于A、B①若直线l的倾斜角为45°,求弦长②若p为A、B中点,求直线l的方程 已知抛物线y^2=4x,过点M(-1,0)作一条直线l与抛物线相交于不同的两点A,B,点A关于x轴对称点为C,求证直线BC过定点 过抛物线y^2=4x的焦点且斜率为2的直线l交抛物线于a,b两点,(1)求直线l的方程,(2)求线段a,b的长 直线l过抛物线y^2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得线段长为4.则a=急用 过抛物线y^2=4x的焦点且斜率为2的直线l交抛物线于A,B两点求l的方程.求/AB/ 已知抛物线C:y^2=4x,直线L:y=kx+b与C交于A,B两点,O为坐标原点(1)当k=1时,且直线L过抛物线C的焦点时已知抛物线C:y^2=4x,直线L:y=kx+b与C交于A,B两点,O为坐标原点(1)当k=1时,且直线L过抛物线C 已知抛物线C:y^2=4x,直线L:y=kx+b与C交于A,B两点,O为坐标原点(1)当k=1时,且直线L过抛物线C的焦点已知抛物线C:y^2=4x,直线L:y=kx+b与C交于A,B两点,O为坐标原点(1)当k=1时,且直线L过抛物线C的 已知抛物线y^2=4x,直线L的斜率为1,且过抛物线的焦点,求直线L的方程已知抛物线y^2=4x,直线L的斜率为1,1.且过抛物线的焦点,求直线L的方程2.直线与抛物线交于两点A,B,O是坐标原点,求三角形AOB的面 已知抛物线C:Y^2=4x,直线L:Y=1/2x+b交于A,B两点,O为坐标原点已知抛物线C:Y^2=4x,直线L:Y=1/2x+b与C交于A,B两点,O为坐标原点(1)当直线L过抛物线的焦点F时,求|AB|(2)是否存在直线L使得直线OA,OB倾斜角 已知圆C:x^2+y^2-4x=a,抛物线y^2=4x,过抛物线焦点F的直线L与圆交于M,N,与抛物线相交于A,B若a=1/4,是否存在直线L,使得|FA|,|MN|,|FB|成等比数列?若存在,求出L的斜率,若不存在,请说明理由 抛物线x^2=-2y与过点A M(0,-1)的直线l相交于A,B两点,O为坐标原点,若直线OA和OB的斜率和为1,求直线方程l 已知抛物线方程 x的平方=12y ,直线l过其焦点,交抛物线于A,B,两点,|AB|=16 1)求抛物线的焦点坐标和准线方程2)求A,B中点的纵坐标 直线l过抛物线y=8x^2的焦点,若抛物线上存在两个不同的点A,B关于直线l对称,求直线l斜率的取值范围 直线L过抛物线y²=4x的焦点,与抛物线交于A,B两点,若|AB|=8,求直线L的方程 直线L过抛物线y²=4x的焦点,与抛物线交于A,B两点,若|AB|=8,求直线L的方程 已知抛物线C:y=ax^2,直线l:y=ax+1/4过抛物线C的焦点已知抛物线C:y=ax^2,直线l:y=ax+1/4过抛物线C的焦点.(1)求a的值;(2)在直线x+y+1=0上任取一点P作抛物线C的两条切线PA、PB,切点分别为A、B,求