高中立体几何:四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号2四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号21,如果在BC上存在E点,使得平面PED垂直PAC,证明E为BC的中点2,在1的条
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:54:44
xn@_;v}H@S!qU,$EV'(*8!]7WHV
W͌fXikz< IuFW)~MpޝM7wo8t
NO<˫:u/َk˂`D_|SfzHxة@ʟn} :p~
;[
高中立体几何:四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号2四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号21,如果在BC上存在E点,使得平面PED垂直PAC,证明E为BC的中点2,在1的条
高中立体几何:四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号2
四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号2
1,如果在BC上存在E点,使得平面PED垂直PAC,证明E为BC的中点
2,在1的条件下,求平面PAB与平面PDE所成锐二面角的余弦值
高中立体几何:四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号2四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号21,如果在BC上存在E点,使得平面PED垂直PAC,证明E为BC的中点2,在1的条
高中立体几何证明题:如图:在四棱锥P-ABCD中,底面ABCD是平行四边形,E是PC的中点,求证 :PA 平行 平面EDB
高中立体几何题 已知四棱锥P-ABCD中,
高中立体几何 不难的,在底面是平行四边形的四棱锥P--ABCD中,AB垂直于AC,PA垂直于ABCD且PA=AB,点E是PD的中点.求证:PB//平面AEC
高中立体几何题,如图,已知四棱锥P-ABCD的底面为等腰梯形 AB∥CD,AC⊥BD,PH是四棱锥的高,垂足为H如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,PH是四棱锥的高,垂足为H,E为AD的中点.(1)证明PE
高中立体几何 急在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥ABCD,AB=1,PA×AC=1 角ABC=⊙若⊙=90 求二面角A-PC-B的大小 试求四棱锥P-ABCD的体积V的取值范围
高中立体几何:四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号2四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号21,如果在BC上存在E点,使得平面PED垂直PAC,证明E为BC的中点2,在1的条
高中立体几何,请问我这样做对不对呢?原题:在四棱锥O-ABCD中,底面ABCD为平行四边形,M为高中立体几何,请问我这样做对不对呢?原题:在四棱锥O-ABCD中,底面ABCD为平行四边形,M为OA的中点,N为BC的
高中立体几何 急,会的网友速度如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥地面ABCD,PA=AD=1,AB=2,F是PD的中点,E是线段AB上的点.(1)当E是AB的中点时,求证:AF平行与平面ABCD(2)要使二面角P-EC-D的大小为4
高中立体几何二面角一道题目!四棱锥P-ABCD.PA垂直矩形ABCD所在平面,M、N分别是AB、PC的中点,且MN垂直于平面PC,求二面角P-CD-B的大小
高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.若H为PD上的动点,EH与平面PAD所成最大角的正切值为(√6)/2,求二面角E-AF-C的余弦值.
高中立体几何 二面角已知四棱锥P-ABCD是底面ABCD是平行四边形,面PAB垂直面ABCD,且PA=BC=a,PB=AC=2a,角APB=60度,1,求二面角B-PC-A的正弦值 2,若点M在CD上,且DM=1/3DC,求点A到平面PMB的距离如图
高中立体几何一道四棱锥s-abcd底面是矩形,AD=2,SA垂直底面ABCD,已知棱BC上存在异于BC的一点S,使得PS垂直PD.(1)求AB长的最大值(2)当AB长度取到最大时,求异面直线ap与sd所成角的余弦值 最好用
高中立体几何 多面体六棱锥P-ABCDEF中,底面是边长为2的正六边形,PA于底面垂直,PA=2求二面角C-PD-E的大小
一道高中立体几何的题目.已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,O1是底面A1B1C1D1的中心.E是CO1上的点,设CE等于X,四棱锥E-ABCD的体积为y,求y关于X的函数关系式..图只有自己画一下了,
求道高中几何题四棱锥P-ABCD的底面积ABCD是边长为1的菱形,角BCD为60度,E是CD的中点.PA垂直底面积ABCD,PA=根号3求:证明BE垂直平面PAB
【高分求高手】空间几何题 如图,四棱锥ABCD中,底面ABCD是正方形如图,四棱锥ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD E是P的中点, 求证 平面PCA⊥平面BDE
高中必修2几何难题问题1 四棱锥P-ABCD中,PA垂直面ABCD,AB垂直AD,AC垂直CD,角ABC=60度,PA=AB=BC.E是PC的中点 问:1.求证CD垂直AE 2.求证PD垂直面ABE问题2 四棱锥P-ABCD的底面是边长为a的菱形,角BCD=120度
高中立体几何:棱柱,棱锥…的基本概念?