证明题,请把过程写详尽点,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:27:01
证明题,请把过程写详尽点,
xmOPǿBBlv}~>]6d50&*1 Fᇡ+ ޶x^Ŗ{sIuj&S42@ۭ~F986Kj*?b{ U偂mWnBR(*E!Dhe0# {{A8jɚȉ8Ċ*h`^cth9jG9fhhr4Y^bU LJI-4ȪCP6uho29^4iC}ւ*+x{Ztl@&ed٩T7ዄ7Bci&̢M,3ʼnj{>m+yH8d.9X '풀9ONŽsd]wuXHY|Ь:dݏQyc`LNI;gҬ_dLDl|Y:ölǯwdڎ-h;Wi/x%6mL<ˡ8VT51s\h{{we}6+_EQDO67 j1rX0gzp ߃og

证明题,请把过程写详尽点,
证明题,请把过程写详尽点,

证明题,请把过程写详尽点,
证明一:
令f(t)=tlnt (t>0)
求导得:
f'(t)=lnt+1
再次求导得:
f''(t)=1/t>0
所以:f(t)是凹函数
所以:[f(x)+f(y)]/2>f[(x+y)/2]
所以:(xlnx+ylny)/2>(x+y)/2*ln[(x+y)/2]
所以:xlnx+ylny>(x+y)ln[(x+y)/2]
证明二:
xlnx+ylny-xln(x+y)-yln(x+y)-(x+y)ln(1/2)
=xln[x/(x+y)]+yln[y/(x+y)]-(x+y)ln(1/2)
=-xln(1+y/x)-yln(1+x/y)-(x+y)ln(1/2)
=-x[ln(1+y/x)+y/xln(1+z/y)-(1+y/x)ln2]
令y/x=t
即证:
ln(1+t)+tln(1+1/t)-(1+t)ln2<0
由于x、y地位对等,所以设y>x,即t>1
构造f(t)=ln(1+t)+tln(1+1/t)-(1+t)ln2
求导f'(t)=ln(1+t)-lnt-ln2=ln(1+1/t)-ln2<0
所以:f(t)是减函数,f(t)所以:ln(1+t)+tln(1+1/t)-(1+t)ln2<0
所以:-x[ln(1+y/x)+y/xln(1+z/y)-(1+y/x)ln2]>0
即:xlnx+ylny>(x+y)ln[(x+y)/2]

能人太多了,网上解答有。

xlnx+ylny-xln(x+y)-yln(x+y)-(x+y)ln(1/2)
=xln[x/(x+y)]+yln[y/(x+y)]-(x+y)ln(1/2)
=-xln(1+y/x)-yln(1+x/y)-(x+y)ln(1/2)
=-x[ln(1+y/x)+y/xln(1+z/y)-(1+y/x)ln2]
令y/x=t
即证:
ln(1+t)+...

全部展开

xlnx+ylny-xln(x+y)-yln(x+y)-(x+y)ln(1/2)
=xln[x/(x+y)]+yln[y/(x+y)]-(x+y)ln(1/2)
=-xln(1+y/x)-yln(1+x/y)-(x+y)ln(1/2)
=-x[ln(1+y/x)+y/xln(1+z/y)-(1+y/x)ln2]
令y/x=t
即证:
ln(1+t)+tln(1+1/t)-(1+t)ln2<0
由于x、y地位对等,所以设y>x,即t>1
构造f(t)=ln(1+t)+tln(1+1/t)-(1+t)ln2
求导f'(t)=ln(1+t)-lnt-ln2=ln(1+1/t)-ln2<0
所以:f(t)是减函数,f(t)所以:ln(1+t)+tln(1+1/t)-(1+t)ln2<0
所以:-x[ln(1+y/x)+y/xln(1+z/y)-(1+y/x)ln2]>0
即:xlnx+ylny>(x+y)ln[(x+y)/2]

收起