若数列{An},{Bn}都是等差数列,s,t为已知实数,求证{an^t*bn^t}也是等差数列{an^s*bn^t}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 07:04:15
x){ѽ
O;W;T;վllk;n_))yc훞_t<γM/7V'ŕh%';iIC$mii|dl깗fYB)MF 16`đt>۴H tNe.}s Ӂt>dg$ UJ
若数列{An},{Bn}都是等差数列,s,t为已知实数,求证{an^t*bn^t}也是等差数列{an^s*bn^t}
若数列{An},{Bn}都是等差数列,s,t为已知实数,求证{an^t*bn^t}也是等差数列
{an^s*bn^t}
若数列{An},{Bn}都是等差数列,s,t为已知实数,求证{an^t*bn^t}也是等差数列{an^s*bn^t}
题目确实错了啊
应该是这样的:
若数列{An},{Bn}都是等比数列,s,t为已知实数,求证{an^t*bn^t}也是等比数列.
题目有没有错啊,S要来干吗啊
什么啊
若数列{an},{bn}都是等差数列,s,t 为已知常数,求证数列{ s an+t bn}是等差数列
若数列{An},{Bn}都是等差数列,s,t为已知实数,求证{an^t*bn^t}也是等差数列{an^s*bn^t}
若数列{an},{bn}都是等差数列,求{K(an+bn)}是等差数列
若数列{an}、{bn}都是等差数列,s.t为已知常数,则数列{san+tbn}是等差数列,类比以上命题条件和结论写出关于等比数列{an}和{bn}的类似结论,并予以证明
若{an}和{bn}数列是等差数列,s,t为已知实数,求证{san+tbn}也是等差数列.
设数列an,bn都是等差数列若a1+b1=5 a7+b7=15则a4+b4=
设数列{an}、{bn}各项都是正数,a1=1,b1=2,若lgbn,lgan+1,lgbn+1成等差数列,5an,5bn,5an+1成等比数列,求an,bn通项公式
请证明:若数列{n}与{bn}都是等差数列,它们的前n项和分别为Sn,Tn,则an/bn=S2n-1/T2n-1
已知{an},{bn}都是各项为正数的数列,都有an,bn^2,an+1成等差数列 ;bn^2,an+1,bn+1^2成等比数列1.试问{bn}是否为等差数列
两个数列{an}和{bn}满足bn=a1+2a2+...+nan/1+2+...+n,求证:若{bn}为等差数列,则数列{an}也是等差数列?能看懂的
数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.
等比数列问题,请速回答,已知命题P:设数列{an}是等差数列,若存在正整数r,s(r≠s),使ar=as,则数列{an}是常数列命题Q:设数列{bn}是等差数列,若存在正整数r,s(r≠s),使br=bs,则数列{bn}是常数列1.求证
已知数列{an}和{bn}满足关系:bn=(a1+a2+a3+…+an)/n,(n∈N*).若{bn}是等差数列,求证{an}为等差数列
设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列
在等比数列{an}中,an>0,n属于N*:若{bn}是等差数列,求证数列{lg an}是等差数列,数列{2bn}是等比数列
嗯 如上 bn,an,a5,a12神马的n,5,12都是下标、、、若等差数列{an},{bn}满足bn=an*an+1*an+2,数列{bn}的前n项和为Sn,若数列{an}满足3a5=8a12>0,试问当n为何值时,Sn取最大值请快点~这题真没错 = =因为
设数列an为等差数列,数列bn为等比数列若a1
设数列an为等差数列,数列bn为等比数列若a1