十万火急!1小时回答1.若自然数N的个位数码之和为1988,则ND的最小数是?(这题我数码不懂,所以不好算,个位把过程写啊)2.已知1个4位数,它除以11余1,除以13余3,除以17余7,这样的4位数最小为多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:03:19
十万火急!1小时回答1.若自然数N的个位数码之和为1988,则ND的最小数是?(这题我数码不懂,所以不好算,个位把过程写啊)2.已知1个4位数,它除以11余1,除以13余3,除以17余7,这样的4位数最小为多少
十万火急!1小时回答
1.若自然数N的个位数码之和为1988,则ND的最小数是?(这题我数码不懂,所以不好算,个位把过程写啊)
2.已知1个4位数,它除以11余1,除以13余3,除以17余7,这样的4位数最小为多少》
3.当2的1000次方除以13时余多少?
4.除以8和9都余1的所有3倍数的和是多少?
十万火急!1小时回答1.若自然数N的个位数码之和为1988,则ND的最小数是?(这题我数码不懂,所以不好算,个位把过程写啊)2.已知1个4位数,它除以11余1,除以13余3,除以17余7,这样的4位数最小为多少
答案
1.8999……999(220个9)
2.2421
3.10
4.6492
分析
1.因为数位越小的数,它的数值就越小,所以数位上应尽量考虑9,但又因为1988除以9余8,所以应在最大的一位上填8才能使数位尽可能小.所以答案为8999……999(220个9).
2.可以把除以11余1、除以13余3、除以17余7看成除以11欠10、除以13欠10、除以17欠10,那么,这个数最小就是11、13、17的最小公倍数减10,也就是11*13*17-10=2421.
3.我们应该从2的一次方开始找规律,从2的一次方开始除以13的余数分别是2、4、8、3、6、12、11、9、5、10、1、12、11.也就是说,从2的6次方开始有规律了.那么2的1000次方的余数就是1000-5/6=165……5.因为从12开始数的第5个数是10,所以2的1000次方除以13余10.
4.首先,我们要将100到1000中72的倍数找出来,它们分别是144、216、288、360、432、504、576、648、720、792、864、936.将它们加起来得到的数是6480,由于每个数都有余数,所以还要加上12个1,也就是6480+12=6492.
1.8999……999(220个9)
2.2421
3.10
4.6492