已知不等式ax^2+bx+c〉0的解集为(-∞,-1)∪(3,∞),则对于函数f(x)=ax^2+bx+c,比较f(0),f(1),f(4)的大小.

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/12 09:00:15
已知不等式ax^2+bx+c〉0的解集为(-∞,-1)∪(3,∞),则对于函数f(x)=ax^2+bx+c,比较f(0),f(1),f(4)的大小.
xSMo@+{FJ *J>VP)[iK (@h#%Upcݵ9:kTZޏ73o<4F>. Dl?{`(^1gK,ߗq_la-gjMɬJKwDU#]PDI0 2NuEߓW Ҽ55ǒbO$UX:_: oznP%v ɬB 2zSzZc4 KHWĊp@Meفit!K1{_oE A)1#ҁ I!dQV-gMʅf!L\QVUOyo~ i!9+bM+@n-EU 7Ej# (s1q[ufA\y 2Xmğ(!bY &#?( YKYѢw.jycޤ@C.[4N$e:c7 rѸ~$O $

已知不等式ax^2+bx+c〉0的解集为(-∞,-1)∪(3,∞),则对于函数f(x)=ax^2+bx+c,比较f(0),f(1),f(4)的大小.
已知不等式ax^2+bx+c〉0的解集为(-∞,-1)∪(3,∞),则对于函数f(x)=ax^2+bx+c,比较f(0),f(1),f(4)的大小.

已知不等式ax^2+bx+c〉0的解集为(-∞,-1)∪(3,∞),则对于函数f(x)=ax^2+bx+c,比较f(0),f(1),f(4)的大小.
由不等式ax^2+bx+c〉0的解集为(-∞,-1)∪(3,∞)知函数f(x)=ax^2+bx+c的对称轴是x= (-1+3)/2=1 ,函数图像开口向上,所以f(1)最小,
又|0-1|=1f(0)
所以 f(1)

ax^2+bx+c〉0的解集为(-∞,-1)∪(3,∞),
说明函数f(x)=ax^2+bx+c开口向上,且与X轴的二个交点坐标是(-1,0)和(3,0)
那么对称轴是x=(-1+3)/2=1.则有f(0)=f(2)
在(1,+无穷)上是增函数,则有f(4)>f(2)>f(1)
所以,大小是f(4)>f(0)>f(1)

由题设知a大于0(若a<0则取x绝对值任意大显然小于0)
由原不等式的结构知y=ax^2+bx+c的零点为-1 ,3
可做出草图 对称轴x=1
f1

ax^2+bx+c〉0的解集为(-∞,-1)∪(3,∞), 可以 得出 ax^2+bx+c=0的 两根是 X=- 1 X= 3 且开口向上a大于0 所以 韦达定理可得 X1+ X2 =-B/A 得-2A= B 对称轴是 -B/2A = 1 所以 F(1)最小 F(4)最大 F(0)中间