已知三角形三边求其外接圆半径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:40:10
已知三角形三边求其外接圆半径
已知三角形三边求其外接圆半径
已知三角形三边求其外接圆半径
外接圆半径:
公式:
a/sinA=b/sinB=c/sinC=2R (R就是外接圆半径)
本题可以这样:
①.先利用余弦定理:a^2=b^2+c^2-2bc·cosA
求出:cosA=(b^2+c^2-a^2)/2bc
在利用公式:sinA^2+cosA^2=1确定
sinA=根号(1-cosA^2)
=根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]/(2bc)
然后代入 a/sinA=2R求出R.
R=2abc/根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]
利用余弦定理先求出其中的一个角!然后根据正弦定理求出R!就那个正弦定理有等于2R的那个公式!这个公式书上有我这里就不列出来了!希望对你有帮助
利用三角形面积求
三角形面积=abc/4R (R就是外接圆半径)
三角形面积又=根号p(p-a)(p-b)(p-c),其中p=(a+b+c)/2,海伦公式。
所以:
abc/4R=根号p(p-a)(p-b)(p-c)
R=abc/【4倍根号p(p-a)(p-b)(p-c)】,其中p=(a+b+c)/2
有两种方法
方法一《公式法》
a/sinA=b/sinB=c/sinC=2R (R就是外接圆半径)
本题可以这样:
①.先利用余弦定理:a^2=b^2+c^2-2bc·cosA
求出:cosA=(b^2+c^2-a^2)/2bc
在利用公式:sinA^2+cosA^2=1确定
sinA=根号(1-cosA^2)
=根号[(...
全部展开
有两种方法
方法一《公式法》
a/sinA=b/sinB=c/sinC=2R (R就是外接圆半径)
本题可以这样:
①.先利用余弦定理:a^2=b^2+c^2-2bc·cosA
求出:cosA=(b^2+c^2-a^2)/2bc
在利用公式:sinA^2+cosA^2=1确定
sinA=根号(1-cosA^2)
=根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]/(2bc)
然后代入 a/sinA=2R求出R.
R=2abc/根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]
方法二《利用三角形面积求》
三角形面积=abc/4R (R就是外接圆半径)
三角形面积又=根号p(p-a)(p-b)(p-c),其中p=(a+b+c)/2,海伦公式。
所以:
abc/4R=根号p(p-a)(p-b)(p-c)
R=abc/【4倍根号p(p-a)(p-b)(p-c)】,其中p=(a+b+c)/2
收起