A=(aij) 3阶非零矩阵 且aij=Aij (Aij 为代数余子式)请问为什么能得出 A的转置=A*
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 00:27:32
x)sHT0~9c˹^|ʗ3*<1(a똙~OzcדMḑk'<~O_N_jxEާ?mߥ|Vˋk]geTO/lgbݺ'{<|N79j=]7Χ$ف D
A=(aij) 3阶非零矩阵 且aij=Aij (Aij 为代数余子式)请问为什么能得出 A的转置=A*
A=(aij) 3阶非零矩阵 且aij=Aij (Aij 为代数余子式)请问为什么能得出 A的转置=A*
A=(aij) 3阶非零矩阵 且aij=Aij (Aij 为代数余子式)请问为什么能得出 A的转置=A*
我建议你去看看A*的定义吧
A=(aij) 3阶非零矩阵 且aij=Aij (Aij 为代数余子式)请问为什么能得出 A的转置=A*
设A=(aij)3*3为非零实矩阵,aij=Aij,Aij 是行列式|A|中元素aij的代数余子式,则行列式|A|
A是n阶非零矩阵,A*是其伴随矩阵,且满足aij=Aij,证明A可逆
A是一个3x3阶矩阵,a33=1 ,aij=Aij ,求detA
设A=(aij)mn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2….,n),证明:Aij=aij,i
矩阵,行列式求值已知实矩阵A = (aij)3*3满足条件:(1)aij = Aij,Aij是aij的代数余子式,(i,j=1.2.3);(2)a11 不为0.计算|A|的值.
设A=(aij)nxn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2,.n),证明:Aij=aij,i,j=1,2,设A=(aij)nxn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2,.n),证明:Aij=aij,i,j=1,2,.,n
矩阵的题.Aij三阶非零矩阵,如果代数余子式Aij=aij ,求 对A 取行列式的...矩阵的题.Aij三阶非零矩阵,如果代数余子式Aij=aij ,求 对A 取行列式的结果,即IAI
几题大学线性代数的计算,证明题1.已知实矩阵A=(aij)3*3满足条件aij=Aij(i,j=1,2,3),其中Aij是aij的代数余子式,且a11≠0,计算行列式A的值.2.设A为n阶非零方阵,A*是A的伴随矩阵,若A*=AT,证明行列式A
设n阶矩阵A=(aij),其中aij=|i-j|,求|A|线性代数~
n阶矩阵A=(aij),其中aij=|i-j|,求|A|.
n阶实矩阵A=(aij)是正定阵,其中aij=1/(i+j)
设A=(aij)为n阶方阵,且aii>0,aij
线性代数问题 为什么aij+Aij=0 可以得出 |A|=-|A|^2 ,Aij是aij的代数余子式
设A=(aij)n×n是上三角矩阵,A的主对角线元相等,且至少有一个元素aij≠0,证明A不能 .设A=(aij)n×n是上三角矩阵,A的主对角线元相等,且至少有一个元素aij≠0,证明A不能与对角矩阵相似
三阶矩阵A=(aij)3x3的特征值为2,3,4 ,Aij为行列式A中元素aij的代数余子式,求 A11+A22+A33的值?
已知三阶实矩阵A满足aij=Aij(i=1、2、3;j=1、2、3)求detA
线性代数:为什么解析说aij=Aij?