lim(n→+∞)∫〔0,1〕X∧2n/1+Xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:27:09
x;N@D!E8D:x!~5QBFtZZ
8 ?/je}k^xxwT=83ϗ7ەݫ8'eRC KkЅTIoR5Fv^k:!o27d32r!e#l#i FH+,RDžBR\La{%g* DNP(A4"b;m[ :Dz+
lim(n→+∞)∫〔0,1〕X∧2n/1+Xdx
lim(n→+∞)∫〔0,1〕X∧2n/1+Xdx
lim(n→+∞)∫〔0,1〕X∧2n/1+Xdx
lim(n→+∞)∫〔0,1〕X∧2n/1+Xdx
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
lim ∫1 x∧n╱1+xdx=0 n→∞ 0
lim(cos1/n)^n^2 n->∞lim (1+|x|)^1/x x->0
lim(x→0)(x/2)/sin2x还有lim(x→0+0)(根号(1-cosx)/sinx)=?lim(n→∞)(1+4/n)^n=?lim(x→∞)(1-1/x)^x=?lim(n→∞)(1+1/n)^(n+m)=?(m属于N)
计算下列极限:1)lim(n→∞) 1/n3 2)lim(n→∞)4n+1/3n-11)lim(n→∞) 1/n3 2)lim(n→∞)4n+1/3n-13) lim(n→∞) (1/3)n4)lim(n→∞)n3+2n-5/5n3-n 5) lim(n→∞)(1+1/2n)n 6) lim(n→∞)2x3-x2+1/3x2+2x-9 7) lim(x→0 )sin3x/sin7x8)
从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)
lim x→n (√n+1-√n)*√(n+1/2)lim x n→∞ (√n+1-√n)*√(n+1/2)
求 lim n→∞∫(上限1下限0)x^n/(1+x^2)dx
求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
lim n〔√(n^2+1)-n〕当n→∞时的极限
lim(x→∞)1+2+3+…+n/(n+2)(n+4)=?
lim(x→0)(n/(n+1)^2)能用洛必达求吗?
求下列两个极限lim(x→∞)e^(-x^2)*∫(0→x)[t^2*e^(t^2)]dt / xlim(n→∞)[(1+1/n)(1+2/n)...(1+n/n)]^(1/n)
lim∧(x→∞)(1+2∧n+3∧n)∧1/n=?
lim(x→∞)(1+2∧n+3∧n)∧(1 /n)=?
lim[n→∞] (x^n+1)^(1/n)
lim(n→∞) (cos x/n)^n^2