f(x)在[0,1]有连续的导数,f(0)=1,且∫∫f'(x+y)dxdy=∫∫f(t)dxdy,积分区域Dt={(x,y)|0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:31:45
f(x)在[0,1]有连续的导数,f(0)=1,且∫∫f'(x+y)dxdy=∫∫f(t)dxdy,积分区域Dt={(x,y)|0
x)KӨ|:gEa9/{{Y-Oy6uNΓSu4u J͔J[F |mO{v=?ߥĶZBR&H7JmA [g7BVjPo-L)hUؖ`ÞO@t{fAmK1m5tK4TZqAb(3y

f(x)在[0,1]有连续的导数,f(0)=1,且∫∫f'(x+y)dxdy=∫∫f(t)dxdy,积分区域Dt={(x,y)|0
f(x)在[0,1]有连续的导数,f(0)=1,且∫∫f'(x+y)dxdy=∫∫f(t)dxdy,积分区域Dt={(x,y)|0

f(x)在[0,1]有连续的导数,f(0)=1,且∫∫f'(x+y)dxdy=∫∫f(t)dxdy,积分区域Dt={(x,y)|0
∫∫f(t)dxdy=f(t)∫∫dxdy=t^2f(t)/2
∫∫f'(x+y)dxdy=∫(0,t)dv∫(0,t)f'(u)du=∫(0,t)(f(t)-1)dv=t(f(t)-1)
由t(f(t)-1)=t^2f(t)/2得:f(t)-1=tf(t)/2
f(t)=2/(2-t)
f(x)=2/(2-x) (0

f(x)在[0,1]上有连续导数,f(0)=0,0 设f(x)在[0,1]上有连续导数,f(0)=0,0 设f(x)在[0,1]上有连续导数,f(0)=0,0 f(x)在[0,+∞)有连续导数,f''(x)>=k>0,f(0) f(x)在[0,+∞)有连续导数,f'(x)>=k>0,f(0) 设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明: 设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明 f(x)在点x=0处具有连续的二阶导数,证明f证明f(x)的二阶导数有界 高等数学导数f(x)在0可导,绝对值f(x)在0连续不可导的例子有啥? 设f(x)在[0,1]上有连续一阶导数,在(0,1)内二阶可导. 设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt 设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt 中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)] 设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)| 设f(x)在[0,1]上具有二阶连续导数,且|f''(x)| 设函数f(x)有连续的导数,并且f(0)=f'(0)=1,求lim(x-->0){[f(sinx)-1]/Inf(x)}?需过程 设f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,f(x)不恒为零.证明:max|f(x)| 函数F(X)的导数为f(x),f(x)不连续的例子是不是很特别很难找啊?高数 导数函数F(X)的导数为f(x),f(x)一般情况都连续吗?F(x)=|x|,其导函数f(x)在x=0处不连续 F(x)=|x| 貌似不可导?