中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:13:32
中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)]
xRN@wImua%. KP##EPǿәb‚-W͜{^3j:Nd0lw]Ȉ`@@Kdyf ~+֔>$}WWb,"162 IܪS2[ Nmkb,%uBD

中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)]
中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...
中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)]

中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)]
这样的题主要是构造辅助函数.如果本题没有问题,那么构造的辅助函数应该是
F(x)=[f(x)-f(0)]/e^(x^2).F(0)=0,可惜的是给出的条件不满足F(1/2)=0,除非将条件改为
f(1/2)=f(0),这样根据中值定理,存在a∈(0,1/2),满足F'(a)=0,化简即得f'(a)=2a[f(a)-f(0)].当然可能我孤陋寡闻了,愿闻其详

中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(...中值定理 f(x)在R内有一阶连续的导数,f'(1/2)=0,证明.存在a属于(0,1/2)使f'(a)=2a[f(a)-f(0)] 导数微分已知函数f(x)在[a,b]内有一阶连续导数,而且在(a,b)内具有二阶导数,请问f(x)的二阶导数是否一定连续呢? 求解答一道跟微积分中值定理有关的题目f(x)在(-∞,+∞)上有一阶连续导数,f′(1/2)=0,证明存在ε∈(0,1/2)使f′(ε)=2ε[f(ε)—f(0)] 在泰勒中值定理中“f(x)在x0的某个邻域内有直到n+1阶的导数”这句话怎么理解? 急死我了…求大一中值定理与导数的应用这是大一的题.用到中值定理啦…高手帮帮忙…设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内存在一点﹩,使得f'(﹩)-f(﹩)=0.不会 到底什么叫做具有连续偏导数?具有连续偏导数到底是什么意思?f(x,y,z)具有一阶连续偏导数是指f'x,f'y,f'z都连续吗?那么在高斯公式的条件中,P,Q,R要求具有一阶连续偏导数是指P'x,Q'y,R'z连续还是 一道微分中值定理题目若函数f(x)在[0,1]连续,在(0,1)可导内有二阶导数,f(0)=0,F(x)=(1-x)^2f(x),证明:在(0,1)内至少有一点ξ,使得F''(ξ)=0.这个题目很明显F(1)=F(0)=0,由罗尔中值定理很容易得到,存在ξ, 设f(x)在[0,1]上有连续一阶导数,在(0,1)内二阶可导. 若f(x)在(-∞,+∞)内有一阶连续导数且f(0)=0,则当A=?时,g(x)=f(x)/x,x≠0;A,x=0在(-∞,+∞)内连续 设函数f(x)在[a,b]上连续,在(a,b)内具有二阶连续导数,证:存在ξ∈(a,b)使(如图)用拉格朗日中值定理怎么证明 数学中值定理证明只是其中的这一步不明白 设f(x)在(-1 1)内具有二阶连续导数.且f (x)不等于0证明对于(-1 1)中的任一点x,x不等于0,存在唯一的Θ(x)∈(0 1),使得f(x)=f(0)+x f ' (Θ(x)x) 成 问一道关于微分中值定理的数学题设函数f(x)在[0,1]上连续,在区间(0,1)上可导,且有f(1)=2f(0),证明在(0,1)内至少存在一点m,使得(1+m)f'(m)=f(m)成立.要用微分中值定理来做, 拉格朗日中值定理的小小疑问拉格朗日中值定理:如果函数f(x)在闭区间[a ,b]上连续,在开区间(a ,b)内可导,那么在(a ,b)内至少有一点 & (a 高等数学中:柯西中值定理的应用设函数f(x)在区间[a ,b]上连续,在(a ,b)内可导,证明在(a ,b)内至少存在一点m,使f’(m)=[f(m)- f(a)]/(b-m).注示:f’(m)即f(x)在x=m处的导数 求助 各位高数大神帮帮忙! 高数 拉格朗日中值定理 证明 唯一性 连续 极限 可导【设f(x)在(-1,1)内具有二阶连续导数,且f''(x)不等于0,证明:(1)若给定(-1,1)内的x不等于0,#存在#唯一的a#属于(0,1), 在偏导数那里卡了...求u=f(x/y,y/z)的一阶偏导数(其中f具有一阶连续偏导数),谢谢么么哒们了~ 设f(x+y,e^xy)有连续的一阶偏导数,求af/ax 设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明: