1/3+1/15+1/35+……+1/(2n-1)(2n+1)=15/31,求n的值,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 19:21:45
1/3+1/15+1/35+……+1/(2n-1)(2n+1)=15/31,求n的值,
xn0_eX9V*}jV7U ڢ`41 hu[7Ho2nzW4iH}_b-(a&%Ԇm blR=Om<`MTecNR*GoahJ&Abq]`W"5C !UH4A!(4Nv[?v2#b'&<)=䅐]<`=Oo`d(-++S-#% %$9fp>4.#Azg#N_ߐ)GCNMwfwr/gpIF{"7Vt28ޞj}ӮT*)r'zײA%891`1?\B $o yYvn#1h6jms9V"jQ}kYDGأW)ƽAp3[g>k qy?OAph9;'DrR~)<,Q'¿|

1/3+1/15+1/35+……+1/(2n-1)(2n+1)=15/31,求n的值,
1/3+1/15+1/35+……+1/(2n-1)(2n+1)=15/31,求n的值,

1/3+1/15+1/35+……+1/(2n-1)(2n+1)=15/31,求n的值,

原式
=1/2(1-1/3)+1/2(1/3-1/5)+……+1/2[1/(2n-1)-1/(2n+1)]
=1/2[1+(1/3-1/3)+(1/5-1/5)+……+1/(2n-1)-1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=1/2×(2n/2n+1)
=n/(2n+1)=15/31
∴15(2n+1)=31n
∴30n+15=31n
∴n=15

1/3+1/15+1/35+1/63…+1/(2n-1)(2n+1)
=1/1x3+1/3x5+1/5x7+1/7x9…+1/(2n-1)(2n+1)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+...+1/2(1/(2n-1)-1/(2n+1))
=1/2{1-1/(2n+1)}
=n/(2n+1)

全部展开

1/3+1/15+1/35+1/63…+1/(2n-1)(2n+1)
=1/1x3+1/3x5+1/5x7+1/7x9…+1/(2n-1)(2n+1)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+...+1/2(1/(2n-1)-1/(2n+1))
=1/2{1-1/(2n+1)}
=n/(2n+1)
n=15
同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦

收起

1/3+1/15+1/35+……+1/(2n-1)(2n+1)=15/31
1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)=15/31
(1/2)*[(1-1/3)+(1/5-1/7)+...+(1/(2n-1)-1/(2n+1))]=15/31
1-1/(2n+1)=30/31
2n/(2n+1)=30/31
所以2n=30
所以n=15
如果不懂,请追问,祝学习愉快!

1/(1*3)+1/(3*5)+1/(5*7)+.....+1/(29*31) = 15/31
n = 15