海伦公式到最后怎么化简啊?过程详细点只求过程详细

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:37:04
海伦公式到最后怎么化简啊?过程详细点只求过程详细
xZ[o+hIkqӁ. AѰqjHIA; @_DQ$EJ$BY[숤#GE(;'~ggwvx]};3g9s.9U#xMȎs,Y6 q65YdEg O)s/mvz|Xeobeoo0zU9VUV 0*EKm{BQViNoALVsY j6*ώgZ?K~aK%/̕,l1d 3VnuWիnK;;krsfL9W+x<kVZ81ֶa[nɯ7F՘)~ s+eV}æjt̬< `Yu Ύq&YNZ:a5kq׷%~ 8<;eksG4 /mp X1 c,+ Fnji@g\,h8Q(TV|Wm[J8;ebaiREbK+<_DMˍ7r%s5W\?;^Q9ch_G>"7e+B"I= qBHN'sw|٭oDBONk*gktH=H@8ɧU3{ƞdD-M--sw%֣^%0UU9ZhP՘V^덅IJ

jQNd$gl0ed"~4v>R `\&Ut7q8Ht`$+߫`PsЫC#NxOEp_ ݅Q,KՆYc+ yz<š8c3#Kqa,[˓z%)Є[8rV=DscHItPP9^vTB׉m[O{+vx{Ss a3yxN>h}9hR=1=#պrCp"޶vΚ(da~`Uc Q[}њ1Ls,QZS/(4"3HJ?¨؆g2d=u%jAynf^)L(.1ʤq瀳YX{YJhT0Ef#3EJvaY)Z6!㜧`RjUZaB8fls9UUkE )hVA_ӿ(!^ά})ڸu^0[ݰ/f kLN"~% ɚP 苰K1N85\ħE0=agY,+r\SQX)QNu-e`HX /_$<@fP|L`{IQW WNx:!6syBl qLqeHhtzo°ɄlA&z݋DzfL 6" pW H){Vmn0VC#FE~}A=/"nƧ7]6.8&H;VUIȁR0+4KF9waɽ5sKBއ~C6U-D IHpǷ_q[eJoUGGRFDFѼ q -hn2v(<皓>vAjsL[!В].Meҝ[mkiʀ|Wh@:Y63u>_<&!MrO! JZ)Də(Sg ^]xh ~[޼xC1ޢdK)z[p!؋KwOC\4Nw#TdjJ7;&UQms`Xw"ǵw_X9l v`L{=wTbk*6Axb7a}O/IsUGREe: (C~Y.K™(rv鯵䩷q4ΓgRH+́""k|nmܷ(y,sa 6%yZ8gj̖89j;dܕrW+ag%,h?! |u9ڣ7m8..V!`OW Bd*p%b M8먈i|>@-γLL.(ﱉYFrLb0ȭh> { wep"{GWy?gQKgw~AW\zUTM?iY?/

海伦公式到最后怎么化简啊?过程详细点只求过程详细
海伦公式到最后怎么化简啊?过程详细点
只求过程详细

海伦公式到最后怎么化简啊?过程详细点只求过程详细
希望对你有帮助
海伦公式
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王 希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积.但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证). 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样.
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
——————————————————————————————————————————————
注:"Metrica"(《度量论》)手抄本中用s作为半周长,所以
S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长.
——————————————————————————————————————————————
由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式.比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案.
证明(1):
与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明.设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC = (a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
证明(2):
我国宋代的数学家秦九韶也提出了“三斜求积术”.它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事.所以他们想到了三角形的三条边.如果这样做求三角形的面积也就方便多了.但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”.
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜.“术”即方法.三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个.相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积.
所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”.以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以
q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]
当P=1时,△ 2=q,
S△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}
因式分解得
1/16[(c+a) 2-b 2][b62-(c-a) 2]
=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)
=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)
=p(p-a)(p-b)(p-c)
由此可得:
S△=√[p(p-a)(p-b)(p-c)]
其中p=1/2(a+b+c)
这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”.
S=c/2*根号下a^-{(a^-b^+c^)/2c}^ .其中c>b>a.
根据海伦公式,我们可以将其继续推广至四边形的面积运算.如下题:
已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积
这里用海伦公式的推广
S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d) (其中p为周长一半,a,b,c,d,为4边)
代入解得s=8√ 3
海伦公式的几种另证及其推广
关于三角形的面积计算公式在解题中主要应用的有:
设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p = (a+b+c),则
S△ABC = aha= ab×sinC = r p
= 2R2sinAsinBsinC =
=
其中,S△ABC = 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载.
海伦公式在解题中有十分重要的应用.
一、 海伦公式的变形
S=
= ①
= ②
= ③
= ④
= ⑤
二、 海伦公式的证明
证一 勾股定理
分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式.
证明:如图ha⊥BC,根据勾股定理,得:
x = y =
ha = = =
∴ S△ABC = aha= a× =
此时S△ABC为变形④,故得证.
证二:斯氏定理
分析:在证一的基础上运用斯氏定理直接求出ha.
斯氏定理:△ABC边BC上任取一点D,
若BD=u,DC=v,AD=t.则
t 2 =
证明:由证一可知,u = v =
∴ ha 2 = t 2 = -
∴ S△ABC = aha = a ×
=
此时为S△ABC的变形⑤,故得证.
证三:余弦定理
分析:由变形② S = 可知,运用余弦定理 c2 = a2 + b2 -2abcosC 对其进行证明.
证明:要证明S =
则要证S =
=
= ab×sinC
此时S = ab×sinC为三角形计算公式,故得证.
证四:恒等式
分析:考虑运用S△ABC =r p,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式.
恒等式:若∠A+∠B+∠C =180○那么
tg · tg + tg · tg + tg · tg = 1
证明:如图,tg = ①
tg = ②
tg = ③
根据恒等式,得:
+ + =
①②③代入,得:
∴r2(x+y+z) = xyz ④
如图可知:a+b-c = (x+z)+(x+y)-(z+y) = 2x
∴x = 同理:y = z =
代入 ④,得: r 2 · =
两边同乘以 ,得:
r 2 · =
两边开方,得: r · =
左边r · = r·p= S△ABC 右边为海伦公式变形①,故得证.
证五:半角定理
半角定理:tg =
tg =
tg =
证明:根据tg = = ∴r = × y ①
同理r = × z ② r = × x ③
①×②×③,得: r3 = ×xyz
∵由证一,x = = -c = p-c
y = = -a = p-a
z = = -b = p-b
∴ r3 = ∴ r =
∴S△ABC = r·p = 故得证.
三、 海伦公式的推广
由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广.由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p= ,则S四边形=
现根据猜想进行证明.
证明:如图,延长DA,CB交于点E.
设EA = e EB = f
∵∠1+∠2 =180○ ∠2+∠3 =180○
∴∠1 =∠3 ∴△EAB~△ECD
∴ = = =
解得: e = ① f = ②
由于S四边形ABCD = S△EAB
将①,②跟b = 代入公式变形④,得:
∴S四边形ABCD =
所以,海伦公式的推广得证.
四、 海伦公式的推广的应用
海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事半功倍.
例题:如图,四边形ABCD内接于圆O中,SABCD = ,AD = 1,AB = 1, CD = 2.
求:四边形可能为等腰梯形.
设BC = x
由海伦公式的推广,得:
(4-x)(2+x)2 =27
x4-12x2-16x+27 = 0
x2(x2—1)-11x(x-1)-27(x-1) = 0
(x-1)(x3+x2-11x-27) = 0
x = 1或x3+x2-11x-27 = 0
当x = 1时,AD = BC = 1
∴ 四边形可能为等腰梯形.

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
就这么简单