(2010课标全国卷)设F1、F2是椭圆E:x2/a2+y2/b2=1,(a>b>0)的左右焦点,过F1斜率为1的直线l与E交于A,B两点且AF2,AB,BF1成等差数列.(1) 求l的离心率(2) 求点P(0,-1)满足PA=PB,求E的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 06:31:47
(2010课标全国卷)设F1、F2是椭圆E:x2/a2+y2/b2=1,(a>b>0)的左右焦点,过F1斜率为1的直线l与E交于A,B两点且AF2,AB,BF1成等差数列.(1) 求l的离心率(2) 求点P(0,-1)满足PA=PB,求E的方程
xV[OG++Uv5YπT2~z姢]K~ I*Ԇخ/tg<zfrQԷJ-939|$9|ǭetvdg_-<)x=q꺷'J2ؾ|95Ev6=X.n\ dcҹͩuۋ{7 Eb<Lyȁ!=QD=Qz1 bvg};8=.iWd/8}7zmw>?{"jV$^ߨqa$ u@`(pg6!PusQ3q=qDŽ*`a !1f>h}R-w8b#!bF함ʞ[Wo`KIJ*9{T*bU踔ȍlɺ)UM1-YIf h9p!DU"R" AN޴YU3}gznĭC 'yH jΪT'B@ :75G5y]\xs"vOx0xPeT9@R|׸7O'gwY~q%j>

(2010课标全国卷)设F1、F2是椭圆E:x2/a2+y2/b2=1,(a>b>0)的左右焦点,过F1斜率为1的直线l与E交于A,B两点且AF2,AB,BF1成等差数列.(1) 求l的离心率(2) 求点P(0,-1)满足PA=PB,求E的方程
(2010课标全国卷)设F1、F2是椭圆E:x2/a2+y2/b2=1,(a>b>0)的左右焦点,过F1斜率为1的直线l与E交于A,B两点且AF2,AB,BF1成等差数列.
(1) 求l的离心率
(2) 求点P(0,-1)满足PA=PB,求E的方程

(2010课标全国卷)设F1、F2是椭圆E:x2/a2+y2/b2=1,(a>b>0)的左右焦点,过F1斜率为1的直线l与E交于A,B两点且AF2,AB,BF1成等差数列.(1) 求l的离心率(2) 求点P(0,-1)满足PA=PB,求E的方程
F1B|+|F2B|=2a |F1A|+|F2B|=2a
所以|AF2|+|AB|+|BF2|=|F1B|+|F2B|+|F1A|+|F2A|=4a
依题目的2|AB|=|AF2|+|BF2|
所以|AB|=4a/3
设l:y=x+c A(x1,y1) B(x2,y2)
与:(X^2/a^2)+(Y^2/b^2)=1联立得(a^2+b^2)x^2+2a^2cx+a^2(c^2-b^2)
所以x1+x2=-(2a^2c)/ (a^2+b^2) x1x2=a^2(c^2-b^2)/a^2+b^2
所以|AB|=√(1+k^2) |x1-x2|=√2 √(x1+x2)^2-4x1x2=4ab^2/(a^2+b^2)
又因为|AB|=4a/3
所以4a/3=4ab^2/(a^2+b^2)
所以4a^3+4ab^2=12ab^2即a^2=2b^2
所以e^2=(c^2)/(a^2)=(a^2-b^2)/a^2=1/2
所以e=(√2)/2

设A(x1,y1),B(x2,y2),左焦点(-c,0)
则直线l:y=x+c
由题意得
|AF2|+|BF2|=2|AB|
∵ |AF1|+|AF2|=2a........①
|BF1|+|BF2|=2a..........②
①+②得
(|AF1|+|BF1|)+(|AF2|+|BF2|)=4a
即|AB|+2|AB|=4a

全部展开

设A(x1,y1),B(x2,y2),左焦点(-c,0)
则直线l:y=x+c
由题意得
|AF2|+|BF2|=2|AB|
∵ |AF1|+|AF2|=2a........①
|BF1|+|BF2|=2a..........②
①+②得
(|AF1|+|BF1|)+(|AF2|+|BF2|)=4a
即|AB|+2|AB|=4a
|AB|=4a/3
根据焦半径公式有
|AF1|=a+ex1
|BF1|=a+ex2
∴|AB|=|AF1|+|BF1|=2a+e(x1+x2)=4a/3
∴e(x1+x2)=-2a/3
联立椭圆和直线
y=x+c
x²/a² + y²/b² =1,得
(a²+b²)x²+2a²c+a²c²-a²b²=0
把b²=a²-c²代入,得
(2a²-c²)x²+2a²cx+(2c²-a²)a²=0
∴e(x1+x2)=e[-2a²c/(2a²-c²)]=-2a/3
e(ac)/(2a²-c²)=1/3 (左右约去-2a)
e(c/a)/[2-(c/a)²]=1/3 (上下同时除以a²)
e²/(2-e²)=1/3
e=√2/2
2.
PA=PB
即(x1+1)²+y1²=(x2+1)²+y2²
(x1+1)²-(x2+1)²+y1²-y2²=0
(x1-x2)(x1+x2+2) + (y1-y2)(y1+y2)=0
(x1-x2)(x1+x2+2) + [(x1+c)-(x2+c)][(x1+c)+(x2+c)]=0 (把y=x+c代入)
(x1-x2)(x1+x2+2) + (x1-x2)(x1+x2+2c)=0
(x1-x2)[2(x1+x2)+2+2c]=0
∵x1≠x2,即x1-x2≠0
∴2(x1+x2)+2+2c=0
∴x1+x2+1+c=0

[-2a²c/(2a²-c²)]+1+c=0
∵e=c/a=√2/2,即a²=2c²
代入上式,得
c=3
∴a=3√2,a²=18,b²=9
椭圆方程为x²/18+y²/9=1

收起

wqre

(2010课标全国卷)设F1、F2是椭圆E:x2/a2+y2/b2=1,(a>b>0)的左右焦点,过F1斜率为1的直线l与E交于A,B两点且AF2,AB,BF1成等差数列.(1) 求l的离心率(2) 求点P(0,-1)满足PA=PB,求E的方程 设F1、F2为椭圆x²/9+y²/4=1的两个焦点,P为椭圆上的一点,已知P、F1、F2是一个直角三角形...设F1、F2为椭圆x²/9+y²/4=1的两个焦点,P为椭圆上的一点,已知P、F1、F2是一个直角三角形的三 设F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得角F1PF2=120度,求椭圆离心率的范围 设P是椭圆X2/25+Y2/9=1上的一点,F1,F2椭圆上的焦点,如果P到F1的距离是4,那么P到F2的距离是( )1.设P是椭圆X2/25+Y2/9=1上的一点,F1,F2椭圆上的焦点,如果P到F1的距离是4,那么P到F2的距离是( )2.椭圆X2 设F1、F2是椭圆x^2/9+y^2/4=1的两个焦点,P为椭圆上的一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.求|PF1|/|PF2|的值. 设M是椭圆x^2/25+y^2/9=1上的一点,F1,F2是椭圆的焦点,如果点M到点F1的距离为4则点M到点F2的距离为多少? 设p是椭圆x²/49+y²/24=1上的点,若F1,F2是椭圆的两个焦点且/PF1/=8,则△F1 P F2的面积等于? 设P是椭圆X²/9+Y²/4=1上一点,F1,F2是椭圆的两个焦点,则cos∠F1PF2的最小值是 设P是椭圆X^2/9+Y^2/4上一动点,F1.F2是椭圆的两个焦点,则COS角f1pf2的最小值是 设F1,F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>PF2|,求|PF1| / |PF2| 设F1 F2为椭圆x^2/25+ y^2/9=1 的两个焦点,P为椭圆上一点,与F1 F2构成一个三角形,则△PF1F2的周长是? 设P是椭圆C:x^2/9+y^2/4=1上的点,F1,F2是椭圆的两个焦点,求角F1PF2的最大值 设P是椭圆x^2/9+y^2/4=1上一 点,F1,F2是椭圆的两焦点,则cos∠F1PF2的最小值 设P是椭圆X^2/4+Y^2=1上一点,F1,F2是椭圆的两个焦点,则|PF1||PF2|的最大值为?最小值为? 设P是椭圆x^2/25+y^2/16=1上的点,若F1,F2是椭圆的两个焦点,则绝对值PF1+绝对值 设P是椭圆x²/16+y²/9=1上的点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|的值 设p是椭圆x^2/25+y^2/16=1上的点,若f1,f2是椭圆的两个焦点,则|pf1|+|pf2|= 设p施椭圆x^2/9+y^2/4=1上一动点,F1,F2是椭圆的两个焦点,则cos∠F1PF2的最小