求函数的极限lim ( 根号 (x+a)(x+b)-x ) x→+∞

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:06:00
求函数的极限lim ( 根号 (x+a)(x+b)-x ) x→+∞
xN@_eUX^v&jn&1&D  or߅pWbQK7;9s~)c(YU1!'<.A~IT$kRpG-*|ҟ΅dY5) Ȝ{\}eq .@Ml:8FllQ.8DjE*5?`kM,<((3I }IrCzf {_EpL/X5lܕR:]h/ 'z~x Z9#UEGj2{@h#JLPt\NWkAj?35ޙQ+zNfjg-aNnbp~g#aTAJPVj̕8v1ܷy

求函数的极限lim ( 根号 (x+a)(x+b)-x ) x→+∞
求函数的极限lim ( 根号 (x+a)(x+b)-x ) x→+∞

求函数的极限lim ( 根号 (x+a)(x+b)-x ) x→+∞
分母有理化=[(a+b)x+ab]/{根号[(a+x)(b+x)]+x}
上下都除以x=[(a+b)+ab/x]/{根号[(a/x+1)(b/x+1)]+1}
x趋近无穷,式子趋向(a+b)/2

无穷大,只要考虑最高阶就好了

lim ( 根号 (x+a)(x+b)-x ) x→+∞
= lim(根号 (x+a)(x+b)-x)*(根号 (x+a)(x+b)+ x)/(根号 (x+a)(x+b)+ x )
= lim((x+a)(x+b)- x^2)/(根号 (x+a)(x+b)+ x )
= lim[x^2 +(a+b)x +ab - x^2]/(根号 (x+a)(x+b)+ x )
=...

全部展开

lim ( 根号 (x+a)(x+b)-x ) x→+∞
= lim(根号 (x+a)(x+b)-x)*(根号 (x+a)(x+b)+ x)/(根号 (x+a)(x+b)+ x )
= lim((x+a)(x+b)- x^2)/(根号 (x+a)(x+b)+ x )
= lim[x^2 +(a+b)x +ab - x^2]/(根号 (x+a)(x+b)+ x )
= lim[(a+b)x +ab]/(根号 (x+a)(x+b)+ x )
= (a+b)/2
说明:当x→+∞时,若分子分母的最高次幂相同,极限就是分子分母最高次幂的系数比

收起