设x1>0,Xn+1=1/2(Xn+1/Xn)(n=1,2,3.n),证明数列极限Xn n趋向无穷存在 并且求极限值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 07:18:07
x){n_ND= ~D=@Nb}}Ϧnx1ټƗ3'D)tg<_OPxsۓSmlzڰG&Hw
fҨ YUi*(T m|6}iv>߮ wsE.YdWP
H>tX^At`!EBbC)jiŁ$فB
设x1>0,Xn+1=1/2(Xn+1/Xn)(n=1,2,3.n),证明数列极限Xn n趋向无穷存在 并且求极限值.
设x1>0,Xn+1=1/2(Xn+1/Xn)(n=1,2,3.n),证明数列极限Xn n趋向无穷存在 并且求极限值.
设x1>0,Xn+1=1/2(Xn+1/Xn)(n=1,2,3.n),证明数列极限Xn n趋向无穷存在 并且求极限值.
x(n+1)=1/2*(xn+1/xn)>=1/2*2=1 xn=1时取等号
即xn是大于等于1的数
2(X(n+1)-Xn)=2X(n+1)-2Xn=Xn+1/Xn-2Xn
=(1-Xn^2)/Xn
设X1>0,xn+1=3(1+xn) / 3+xn (n=1,2…)求lim xn.
1,x1,x2...Xn,成等比数列,x1 x2..xn>0,x1*x2*...xn=?x1,x2...Xn,2成等比数列,x1 x2..xn>0,x1*x2*...xn=?
设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+x2+x3+.+xn.
Xi>=0,X1+X2...+Xn=1,n>=2,求证X1X2(X1+X2)+...+X1Xn(X1+Xn)+X2X3(X2+X3)...Xn-1Xn(Xn-1+Xn)
设X1=lna,Xn+1=Xn+ln(a-xn),求Xn极限
设数列{xn}满足x1=1 xn=(4xn-1+2)/(2xn-1+7)
设x1=1,x2=2,xn+2=根号下xn+1*xn 求limn→∞ xn
设x1>0,xn+1=3(1+xn)/1+xn,(n=1,2,.)证明极限存在
设x1,x2,...,xn>0,(1)若1,x1,x2,...,xn,2成等差数列,则x1+x2+...+xn=____;(2)若1,x1,x2,...,xn,2成等比数列,则x1*x2*...*xn=_____.
设a>0 ,任取x1>0 ,令xn+1=1/2(xn+a/xn) (其中n=1,2…… ).证明数列{xn} 收敛
设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.
X1=1,Xn=1+Xn/(1+Xn),n=1,2…,求Xn
设x1>-6,xn+1=√xn+6,证明{xn}极限存在
设x1>-6,xn+1=√xn+6,证明{xn}极限存在
设xi∈R+(i=1,2,n),求证:x1^x1x2^x2,xn^xn≥(x1x2,xn)^1/n(x1+x2+,+xn)
1,x1,x2,...xn,2 成等差数列,则x1+x2...+xn=?若成等比数列且x1...xn>0,则x1*x2*.xn=?要具体过程,谢谢
设x1=a>0,x2=b>0,xn+2=根号下(xn+1)(xn) 求limn→∞ xn 其设x1=a>0,x2=b>0,xn+2=根号下(xn+1)(xn) 求limn→∞ xn 其中n+1 n+2均为下标
设x1>0,且有Xn+1=根号6+xn,证明数列xn收敛并求出极限