四个连续整数之积与1相加是一个奇数的平方如上!试证明!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 03:26:13
四个连续整数之积与1相加是一个奇数的平方如上!试证明!
xQJ@v0 e&n0Z71EQUipO1d_QЅ {bi=%fٯz#O=6tf0'=ZF+6ޠvGQ];8lAX/Dhn6Q+军Yr߯Co|L8Rpܿ8߇aꟕ%.%( gV0 R+6%9-b3N4d06 %嗭/ZmV78pHH#,_%W$ ױkO $Ǿ&r| CX'JgR-(_(<娈yxaٶ0թ!8"[DUfPB#IWL&W}*A

四个连续整数之积与1相加是一个奇数的平方如上!试证明!
四个连续整数之积与1相加是一个奇数的平方
如上!
试证明!

四个连续整数之积与1相加是一个奇数的平方如上!试证明!
任意四个连续正整数可以表示为:
a,a+1,a+2,a+3
则:a×(a+1)×(a+2)×(a+3)
=[a×(a+3)+1]^2
证明,左式展开整理=a^4+6a^3+11a^2+6a+1
右式展开整理=a^4+6a^3+11a^2+6a+1

1×2×3×4+1=25
25是5平方

1,2,3,4,的积为24 24加上1=25 25是奇数5的平方。

(n+1)n(n-1)(n-2)+1=(n^2-1)(n-2)n+1=n^4-2n^3-n^2+2n+1=n^4-4n^3+6n^2-4n+1+2n^3-7n^2+6n=(n+1)^4+n(2n^2-7n+6)=(n+1)^4+n(n-2)(2n-3)