lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:26:35
lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.
x){鄉Ϧ/xrfuF^ffFSΎ$铩SΆB[RsuSS64*k*ĭNhQf]SOYl[_lԧ3 5Ԅq`=~~瓽 |cӮ:@wmya$AݣyIL>6{+N#G0FyĨDWWiE&ڦiCO

lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.
lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.

lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.
lim e^{n[ln√(n²+1)-ln(n+1)]}
=lim e^{[ln√(n²+1)-ln(n+1)]/(1/n)} 应用洛必达法则
=lim e^[-(n-1)n²/(n+1)(n²+1)]
=1/e
希望对你有帮助,望采纳,谢谢~

lim(n->∞){[(n^2+1)^(1/2)]/(n+1)}^n=lim(n->∞)[(n^2+1)/(n^2+2n+1)]^(n/2)]=
lim(n->∞)[(1-2n/(n^2+2n+1)]^(n/2)]=
lim(n->∞)(1-2n/(n^2+2n+1)^{-(n^2+2n+1)/2n*[-n^2/(n^2+2n+1)]}=e^(-1)