△ABC中,求证(a²-b²)/(cosA+cosB) + (b²-c²)/(cosB+cosC) + (c²-a²)/(cosC+cosA)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:17:42
△ABC中,求证(a²-b²)/(cosA+cosB) + (b²-c²)/(cosB+cosC) + (c²-a²)/(cosC+cosA)=0
xœJ@_%'.M!7U,9y(mœH&z"V-zMJ7Wpg6I7zof6v|2g_O Osv? 8VH֧;3Գ>Tn/sk966@5VsS Pz3\&,z<#{~;|*2*{]Y&,U">FX ֮6 ,Ea(ݐLr tcQ%*AE*](ICPC׃-Vc0sh5JjݒALLȌ·-ӎ?<0-x)

△ABC中,求证(a²-b²)/(cosA+cosB) + (b²-c²)/(cosB+cosC) + (c²-a²)/(cosC+cosA)=0
△ABC中,求证(a²-b²)/(cosA+cosB) + (b²-c²)/(cosB+cosC) + (c²-a²)/(cosC+cosA)=0

△ABC中,求证(a²-b²)/(cosA+cosB) + (b²-c²)/(cosB+cosC) + (c²-a²)/(cosC+cosA)=0
证明:∵ a/sinA=b/sinB=c/sinC=2R (正弦定理,其中R为△ABC的内接圆半径)
∴(a²-b²)÷(cosA+cosB)+(b²-c²)÷(cosB+cosC)+(c²-a²)÷(cosC+cosA)
=4R^2[(sinAsinA-sinBsinB)/(cosA+cosB)+(sinBsinB-sinCsinC)/(cosB+cosC)+(sinCsinC-sinAsinA)/(cosC+cosA)]
=4R^2[(1-cosAcosA-1+cosBcosB)/(cosA+cosB)+(1-cosBcosB-1+cosCcosC)/(cosB+cosC)+(1-cosCcosC-1+cosAcosA)/(cosC+cosA)]
=4R^2[(cosBcosB-cosAcosA)/(cosA+cosB)+(cosCcosC-cosBcosB)/(cosB+cosC)+(cosAcosA-cosCcosC)/(cosC+cosA)]
=4R^2[(cosB-cosA)^2/(cosA+cosB)+(cosC-cosB)^2/(cosB+cosC)+(cosA-cosC)^2/(cosC+cosA)]
=4R^2[(cosB-cosA)+(cosC-cosB)+(cosA-cosC)]
=4R^2[cosB-cosB+cosC-cosC+cosA-cosA]
=R^2*0
=0
∴ (a²-b²)/(cosA+cosB) + (b²-c²)/(cosB+cosC) + (c²-a²)/(cosC+cosA)=0