感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:49:03
感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B
xTn@Y)jU9} P?ЄrDI HUp D8)bkɿN`./윙9gvZ,m~VkiѝOCL(PCDwNqųۀH?1!}܇ :GJCYM\&zpg0UN{rD}j݇/5ʍ]n\l-o oI**wwfF Dk PUB3%A"caC.#N0߁LJF%((@V%P i0 `ҳPAuԳH$t^ @ єE$vP VxBA?7=˾\drղ߿Y1Iz KA6 wdQrc,^B"N@hFnDE30ҾDO&0L f"g=Cav^/g`'YC<٪T:/uN&Wź߷R1Yo;ב{X{,_P&;m

感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B
感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF
感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为

感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B
拓展:
∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,
∴∠BAC=∠ABE+∠3,
∴∠4=∠ABE,

∠AEB=∠AFC∠ABE=∠4AB=AC
,
∴△ABE≌△CAF(AAS).
应用:
∵在等腰三角形ABC中,AB=AC,CD=2BD,
∴△ABD与△ADC等高,底边比值为:1:2,
∴△ABD与△ADC面积比为:1:2,
∵△ABC的面积为9,
∴△ABD与△ADC面积分别为:3,6;
∵∠1=∠2,
∴∠BEA=∠AFC,
∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,
∴∠BAC=∠ABE+∠3,
∴∠4=∠ABE,

∠AEB=∠AFC∠ABE=∠4AB=AC
,
∴△ABE≌△CAF(AAS),
∴△ABE与△CAF面积相等,
∴△ABE与△CDF的面积之和为△ADC的面积,
∴△ABE与△CDF的面积之和为6,

感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B 感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE 如图,点A B E在一条直线上,且四边形ABCD和四边形BEFG都是正方形,在图中画一个正方形,使所画正方形的面积为正方形ABCD与正方形BEFG的面积和(直接划出图) 如图,在正方形ABCD中,E是AD的中点,点F在DC上 如图已知正方形ABCD的边长是1,E是CD的中点,P为正方形边上的一个动点已知正方形ABCD的边长为1,E为CD边的中点,P为ABCD边上的一动点.动点P从A点出发,沿A---B---C----E运动到达点E,若设点P经过的路程 操作:如图,在正方形ABCD中如图,在正方形ABCD中,点P是CD上一动点(与点C、D不重合),使三角尺的直角顶点P重合,并且一条直角边始终经过点B,另一条直角边与正方形的某一边所在直线交于点E,探 如图①,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限,点P从点A出发,沿正方形的边按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动,当点P到 如图,正方形ABCD中,顶点A、B的坐标分别为(0,10) (8,4),顶点C在第一象限,动点P在正方形ABCD的边上如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD 如图,已知正方形ABCD与正方形AEFG,点E、G分别在边AB、AD上,正方形ABCD的边长为a,正方形AEFG的边长为b,且a>b求三角形BFG,三角形BFE、梯形BCFE的面积(用含a、b的代数式表示) 如图,已知正方形ABCD与正方形AEFG,点E、G分别在边AB、AD上,正方形ABCD的边长为A,正方形AEFG的边长为B,且A>B求三角形BFG、三角形BFE、梯形BCFE的面积(用含A、B的代数式表示) 如图,已知正方形ABCD与正方形AEFG,点E、G分别在边AB、AD上,正方形ABCD的边长为A,正方形AEFG的边长为B,且A>B求三角形BFG、三角形BFE(用含A、B的代数式表示) 如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP. (1)如图②,若M为AD边的中点,①,△AEM 如图,点E在正方形ABCD边BC上,连接AE,以AE为边作正方形AEFG,连接GD,FC,求角FCD的度数. 如图正方形ABCD的边长为8,点E在BC边的中点,点F在CD上且AE平分∠BAF,则AF等于A.12 B.11 C.10 D.9 如图,正方形ABCD的边长为4,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上存在一点P…… 如图,正方形ABCD中,点E在边BC上,BE=2,CE=1,点P在BD上,求PE+PC的最小值.急 如图中的图①,在正方形ABCD中,点E,F分别为BC,CD上的点,且CE=DF,AF,DE相交与点G.⒈试猜想线段AF,DE的数量关系及其所在直线的关系,并对你的猜想给出证明.⒉若点E,F分别在正方形ABCD的边CB的延长线 如图,将变长为4cm的正方形纸片ABCD沿EF折叠(点E,F分别在边AB,CD上),使点B(字数限制,请看问题补充)如图,将变长为4cm的正方形纸片ABCD沿EF折叠(点E,F分别在边AB,CD上),使点B落在AD边上的中点M处,点C落