高数 f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ高数f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ)=f'(ξ)(b-ξ)/a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:20:11
xN@_IvҚEv*Rƛԓ
p61X)<ʉWp!zL~m5>}IYT;E#',oQ 3ϻq5鴅Dyy58<ׯQ#?lz\; ;bEQ/JP$B5:R!l]Uj腯+;y8fMǫKKj\=]\MLO~'L
高数 f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ高数f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ)=f'(ξ)(b-ξ)/a
高数 f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ
高数
f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ)=f'(ξ)(b-ξ)/a
高数 f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ高数f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ)=f'(ξ)(b-ξ)/a
明白的话请采纳.
不懂再问!
高数 f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ高数f(x)在(a,b)可导,[a,b]连续,f(a)=0,a>0,证明在存在a<ξ<b使f(ξ)=f'(ξ)(b-ξ)/a
高数(导数与连续性)有一个结论是:如果函数f(x)在(a,b)可导,且f(x)在a点右可导,在b点左可导,则f(x)在[a,b]可导;我想问的是如果f(x)在(a,b)连续,且f(x)在a点左连续,在b点右连续,则f(x)在[a,b]连续
高数证明题函数f(x)∈C[a,b],在(a,b)可导,a>0.f(a)=0.证明,在(a ,b )内存在一点ζ,使得f(ζ)=(b-ζ)f'(ζ)/a
高数(导数.有一个结论是:如果函数f(x)在(a,b)可导,且f(x)在a点右可导,在b点左可导,则f(x)在[a,b]可导;我对这个定理有些疑问,按照这个定理来说的话,f(x)在[a,b]可导并不能说明f(x)在a,b两点可导
高数证明题!设f(x),g(x)在[a,b]连续且可导,g'(x)不等于0,证明存在ζ∈(a,b)使f(ζ)-f(a)/g(b)-g(ζ)=f’(ζ)/g'(ζ).
高数的函数单调性函数f(x)在区间(a,b),f'(x)>0,f''(x)
f(x)在〔a,b〕连续,在(a,b)可导,f(a)f(b)>0.f(x)在〔a,b〕连续,在(a,b)可导,f(a)f(b)>0证存在ξ∈(a,b)使〔af(b)-bf(a)〕/a-b=f(ξ)- ξf’(ξ) 如题,
..几个高数题目,关于导数的1.设f(x)在(a,b)内连续,且x0∈(a,b),则在点x0处 A.f(x) 的极限存在,且可导 B.f(x)的极限存在,但不一定可导C.f(x) 的极限不存在,但可导 D.f(x) 的极限不一定存在
高数中值定理一个题求解,f(x)在[1,3]连续,在(1,3)可导,证:存在两点a,b 属于 (1,3),使得 (b^3) f'(a)=10 f'(b) .
映射f:X→Y,A包含于X,B包含于X,证明f(A并B)=f(A)∪f(B)高数
f(x)在[a,b]连续且可导,a
高数问题(有关中值定理)f(x)在[0,1]可导,f(0)=0,f(1)=1,证明:对任意满足a+b=1的正整数a,b,存在相异两点x,y,(x,y都在0和1之间),使af'(x)+bf'(y)=1
高数求导:若f(u)可导,且y=f(e^x),则有dy=()若f(u)可导,且y=f(e^x),则有dy=()A.dy=f'(e^x)dxB.dy=f'(e^x)de^xC.dy=[f(e^x)]'de^xD.dy=[f(e^x)]'e^xdx正确答案是什么?A肯定不对,B、C、D对的为什么对,错的错在
高数中值定理已知f(x)在[a,b]连续,在(a,b)可导,且f(a)=f(b)=0,求证在(a,b)至少有一点t属于(a,b),使得f(t)+f'(t)=0
大一高数 导数与微分若f(u)可导,且y=f(e^x),则有(),A.dy=f'(e^x)dxB.dy=f'(e^x)de^xC.dy=[f(e^x)]'de^xD.dy=f'(e^x)e^xdxb和d都是对的!重点在B 是怎么回事
求助大一高数证明题若f(x)在区间[a,b]上连续,且f(a)<a,f(b)>b,则存在ξ∈(a,b)上恒有f(ξ)=0成立
证明f(x)在[a,b]上可导,导函数f‘(x)可积,并且f(b)-f(a)=1证明∫a到b[f’(x)]^2dx>=1/(b-a)
f(x)在(a,b)可导,c∈(a,b),当x≠c时f'(x)>0,f'(c)=0,试证y如题,f(x)在(a,b)可导,c∈(a,b),当x≠c时f'(x)>0,f'(c)=0,试证y=f(x)在开区间(a,b)严格单调递增,