对于数列{an},定义{Δan}为数列{an}一阶差分数列,其中Δan=a(n+1)-an若数列{an}的首项是1,且满足Δan-an=2^n,证明数列{an/2^n}为等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:29:26
对于数列{an},定义{Δan}为数列{an}一阶差分数列,其中Δan=a(n+1)-an若数列{an}的首项是1,且满足Δan-an=2^n,证明数列{an/2^n}为等差数列
xQ=N0 c&9EH )H%BThu&EEi#)ԙz>-i0u`r~ |l5<1x:eEa4<ר9s)жHޖxxi|]Tϊ*lq|)] KbJ`rf8 :MXu)[Ea(w`fCT)-;|TqֻF19*F:x_m

对于数列{an},定义{Δan}为数列{an}一阶差分数列,其中Δan=a(n+1)-an若数列{an}的首项是1,且满足Δan-an=2^n,证明数列{an/2^n}为等差数列
对于数列{an},定义{Δan}为数列{an}一阶差分数列,其中Δan=a(n+1)-an
若数列{an}的首项是1,且满足Δan-an=2^n,证明数列{an/2^n}为等差数列

对于数列{an},定义{Δan}为数列{an}一阶差分数列,其中Δan=a(n+1)-an若数列{an}的首项是1,且满足Δan-an=2^n,证明数列{an/2^n}为等差数列
设bn=an/2^n
b(n+1)=a(n+1)/2^(n+1)
b(n+1)-bn=a(n+1)/2^(n+1)-an/2^n
=[a(n+1)-2an]/2^(n+1)
=[a(n+1)-an-an]/2^(n+1)
=(Δan-an)/2^(n+1)
=2^n/2^(n+1)=1/2
也就是说数列b(n+1)与bn的差值是定值 即公差为1/2
所以数列bn为等差数列 即数列{an/2^n}为等差数列

对于数列{an},定义数列{an+1-an}为数列{an}的差数列,若a1=1,{an}的差数列的通项公式为3∧n,则数列{an}的通项公式an= 对于数列{an},定义{Δan}为数列的一阶差分数列,其中Δan=an+1-an,对于k∈n*,定义{Δ^k*an}为an的k阶差分数列,其中Δ^k*an=Δ(Δ^(k-1)*an)若数列的通项公式为an=n^2+n,试判断{Δan}和{Δ^2*an}是否为等差或等比 对于数列(an),定义(△an)为数列(an)的一阶差分数列,其中△an=a(n+1)-an,(n属于N*),对于数列(an),定义(△an)为数列(an)的一阶差分数列,其中△an=a(n+1)-an,(n属于N*),若(an)的首项是1,且 对于数列{an},定义{Δan}为数列{an}一阶差分数列,其中Δan=a(n+1)-an若数列{an}的首项是1,且满足Δan-an=2^n,证明数列{an/2^n}为等差数列 设数列{An}的通项公式为An=2n-3,n属于正整数.数列{Bn}定义如下对于正整数m,Bm是使得不等式An 对于数列{an},定义数列{an+1-an}为{an}的等差数列,数列{an+1·an}为{an}的积数列,1)若{an}的等差数列是一个公差不为0的等差数列,试写出{an}的一个通项公式2)若{an}的等差数列通项为2^n,a1=2,数列bn的积 数列一题对于数列{an},定义数列{a(n+1)/an}为数列{an}的“商数列”,若a1=2,{an}的“差数列”的通项为2^n,则数列{an}的前n项和Sn= 对于数列{an},定义数列{a(n+1)-an}为数列{an}的差数列,若a1=2{an}的差数列的通项为2^n,则数列{an}的前n项的和Sn=多少 数列{an},定义数列满足:Δan=a(n+1)-an,定义数列{(Δan)的平方}满足:(Δan)的平方=Δa(n+1)-Δan,若数列{2^Δan}中各项均为1,且a21=a2012=0,则a1=?若数列{(Δan)的平方}中各项均为1 不好意思, 对于每项均是正整数的数列A:a1,a2,a3,…,an,定义变换T1,T1将数列A变换为数列T1(A):n,a1-1,a2-1,…,an-1对于每项均是非负整数的数列B:b1,b2,b3,…,bm,定义变换T2 ,T2将数列B各项从大到小排列,然后 对于任意数列,规定(An)称为(An)的一阶差分数列对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=a(n+1)-an,(n属于N*),对正整数k,规定{△^k an}为{an}的k阶差分数列,其中△^k an=△^(k-1)a(n+1)-△^(k 设数列{An},{Bn}定义如下:. 叙述数列{an}发散的定义 数列{an}为等差数列(d 定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是 设数列{an}的通项公式为an=pn+q (写出解题过程的加20!)设数列{an}的通项公式为an=pn+q(n属于N+,P>0)数列{bn}定义如下:对于正整数m,bm是使得不等式an大于等于m成立的所有n中的最小值.(1)若p= 一道语言难懂的高中数学题对于数列an ,定义数列bn 如下:“ 对于正整数m,bm是使不等式an>=m成立的所有n中的最小值,” 问:an的通项公式为an=2n-1,则数列bn的通项是?“ ”内的句子如何理解啊? 定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.(Ⅰ)证明:数列{2an+1}是“平方递推数列”,且数列{lg