请解释关于高数向量定理的证明?定理:设a b都是非零向量,则ab平行的充分必要是条件存在实数λ使a=λb.证:设ab平行,a^0、b^0分别是a、b同向的单位向量,于是a^0=1/IaI a、b^0=1/IbI b.若ab同向,则a^0=b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 19:52:53
请解释关于高数向量定理的证明?定理:设a b都是非零向量,则ab平行的充分必要是条件存在实数λ使a=λb.证:设ab平行,a^0、b^0分别是a、b同向的单位向量,于是a^0=1/IaI a、b^0=1/IbI b.若ab同向,则a^0=b
xRIn0J1} !  сV fpV\?8 Tg }k۳/Nߴ+c0N)1Jf1"~5Qs͑j;ͩ$ DtHt lҢp6 0l͖Ն*>I zȣ^U3X GIT!"UPxCH,ځX@(ywd(Pae'|9!ւ>0R;٩^Փ#չ;WB*6iQ[ w%`"?|nlBŝ]xz^6׻ERtVp.lae=YOUA

请解释关于高数向量定理的证明?定理:设a b都是非零向量,则ab平行的充分必要是条件存在实数λ使a=λb.证:设ab平行,a^0、b^0分别是a、b同向的单位向量,于是a^0=1/IaI a、b^0=1/IbI b.若ab同向,则a^0=b
请解释关于高数向量定理的证明?定理:设a b都是非零向量,则ab平行的充分必要是条件存在实数λ使a=λb.
证:设ab平行,a^0、b^0分别是a、b同向的单位向量,于是a^0=1/IaI a、b^0=1/IbI b.
若ab同向,则a^0=b^0 从而1/IaI a=1/IbI b 即a=IaI/IbI b 取λ=IaI/IbI ,则a=λb.
请问:为什么ab同向,则就a^0=b^0呢?只要任意两个向量方向相同,这两个向量的单位向量就一定相同吗?

请解释关于高数向量定理的证明?定理:设a b都是非零向量,则ab平行的充分必要是条件存在实数λ使a=λb.证:设ab平行,a^0、b^0分别是a、b同向的单位向量,于是a^0=1/IaI a、b^0=1/IbI b.若ab同向,则a^0=b
向量a=b,等价于a的长度和b的长度相等,方向相同.显然,方向相同的单位向量(长度都是1)就满足这个条件.