利用单调有界数列收敛准则证明数列极限存在x(1)>0,x(n+1)=1/2*(x(n)+a/x(n)),n=1,2,...,a>0.其中x(n)的n为下标.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:28:44
利用单调有界数列收敛准则证明数列极限存在x(1)>0,x(n+1)=1/2*(x(n)+a/x(n)),n=1,2,...,a>0.其中x(n)的n为下标.
x){ڱO{lN=Ϧnx1ٔmϦ~cfA59O笨0Դ3Щ6Դ575ANNmOv<ՒdǮ';-h׳I*ҧ`Hs N\/

利用单调有界数列收敛准则证明数列极限存在x(1)>0,x(n+1)=1/2*(x(n)+a/x(n)),n=1,2,...,a>0.其中x(n)的n为下标.
利用单调有界数列收敛准则证明数列极限存在
x(1)>0,x(n+1)=1/2*(x(n)+a/x(n)),n=1,2,...,a>0.
其中x(n)的n为下标.

利用单调有界数列收敛准则证明数列极限存在x(1)>0,x(n+1)=1/2*(x(n)+a/x(n)),n=1,2,...,a>0.其中x(n)的n为下标.
归纳法得:xn≥√a
x(n+1)-xn=1/2×[a/xn-xn]=1/2×(√a+xn)(√a-xn)/xn≤0
所以,xn单调减少
所以,xn单调有界,极限存在

利用单调有界数列收敛准则证明下列数列的极限存在. 如何利用柯西收敛准则证明单调有界数列极限存在如题 利用极限存在准则(夹挤准则或单调有界准则)求证以下数列收敛,并求其极限 利用单调有界数列收敛准则证明下面数列极限存在x1=根号2,X(n+1)=根号2x,n=1,2,3. 利用单调有界收敛准则,证明:数列X1=1/2,X(n+1)=(1+Xn*2)/2,(n=1.2.)存在极限 用单调有界准则证明该数列收敛并求极限【第五个】 利用单调有界数列收敛准则证明数列极限存在x(1)>0,x(n+1)=1/2*(x(n)+a/x(n)),n=1,2,...,a>0.其中x(n)的n为下标. 设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限. 3.(2)利用单调有界的极限存在准则,证明数列极限存在 X1=2,Xn+1=.详细的请看图 利用单调有界收敛准则,证明:数列x1=2^0.5 ,x(n+1)=(2+xn)^0.5 (n=1,2, .)存在极限,并求出极限值 (4)用单调有界准则证明该数列极限存在 证明极限存在X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)利用单调数列收敛准则证明, 数列极限存在证明题.数列首项a1=1/2 满足递推a(n+1)=根号下a(n),证明此数列有极限.参考定理:1单调有界准则 2柯西收敛准则 、请问除了上面两个之外,还有什么定理可以证明数列极限的存 利用单调有界数列收敛原则证明下列数列的极限存在因为上网不方便,用手机无法传照片,数学符号又不好打, 利用单调有界原理,证明数列xn收敛,并求其极限. 利用单调有界原理证明数列的收敛 并求极限 这道题如何证明极限存在?用单调有限数列必有极限准则 利用单调有界数列必有极限存在准则,证明数列极限存在并求出数列为:√2,√(2+√2),√(2+√(2+√2))……