两个数列{an}和{bn}满足bn=(a1+2a2+3a3…+nan)/(1+2+3+…+n)(n∈N*).1+2+3+…n=(n(n+1))/2(1)若数列{bn}是等差数列,求证:{an}也是等差数列;(2)若数列{an}是等差数列,求证:{bn}也是等差数列.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:44:33
xRJ0}^oI}!ylŁCEE.DWEf4]
&7^r8ë{º|ء/҇{l@d`Ӏ* ]S,%,<@HwǯV(XqZ@fr7H~>@4HhZtU7~?wXR&Sk%ԘJf6EJM UjVtu-ogIm97GD'lͤ!*D&*B#ft͒QGhbAzt s}.s
两个数列{an}和{bn}满足bn=(a1+2a2+3a3…+nan)/(1+2+3+…+n)(n∈N*).1+2+3+…n=(n(n+1))/2(1)若数列{bn}是等差数列,求证:{an}也是等差数列;(2)若数列{an}是等差数列,求证:{bn}也是等差数列.
两个数列{an}和{bn}满足bn=(a1+2a2+3a3…+nan)/(1+2+3+…+n)(n∈N*).1+2+3+…n=(n(n+1))/2
(1)若数列{bn}是等差数列,求证:{an}也是等差数列;
(2)若数列{an}是等差数列,求证:{bn}也是等差数列.
两个数列{an}和{bn}满足bn=(a1+2a2+3a3…+nan)/(1+2+3+…+n)(n∈N*).1+2+3+…n=(n(n+1))/2(1)若数列{bn}是等差数列,求证:{an}也是等差数列;(2)若数列{an}是等差数列,求证:{bn}也是等差数列.
bn=(a1+2a2+3a3…+nan)/(1+2+3+…+n) ;
1+2+3+…n=(n(n+1))/2;
bn=2(a1+2a2+3a3…+nan)/n*(n+1)
b1=a1
b2=2(a1+2a2)/2*3=(a1+2a2)/3,b2-b1=2/3*(a2-a1)=2/3 *公差q;
b3=2(a1+2a2+3a3)/12=(a1+2a2+3a3)/6,b3-b2=2/3 *公差q;
所以,如果
若数列{an}是等差数列,假设公差为q,{bn}也是等差数列,公差为2/3 *公差q;
同理可证,如数列{bn}是等差数列,{an}也是等差数列
两个数列{an}和{bn}满足bn=a1+2a2+...+nan/1+2+...+n,求证:若{bn}为等差数列,则数列{an}也是等差数列?能看懂的
已知各项均为正数的两个数列an,bn满足a n+1=an+bn/√an²+bn²
设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn.
已知两个数列an,bn满足bn=3^n*an,且数列bn的前n项和为Sn=3n-2,那么数列an是什么数列?
数列{an}中,a1=-60,an+1=an+3,若数列{bn}满足bn=|an|,求数列{bn}前30项和
已知各项均为正数的两个数列{an}和{bn}满足:a(n+1)=(an+bn)/√(an²+bn²),n∈N+① 设b(n+1)=1+bn/an,N∈N+,求证数列(bn/an)²是等差数列.②设b(n+1)=(√2)bn/an,且{an}是等比数列,求a1和b1的值.大神给步
两个数列{an}和{bn}满足bn=a1+2a2+3a3+.+nan1+2+3+...+n (n€N+). ① 若{b}是等差数列,求证{a}也是等两个数列{an}和{bn}满足bn=a1+2a2+3a3+.+nan/1+2+3+...+n (n€N+).① 若{b}是等差数列,求证{a}也是等差数列②
已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}的前n项的和Tn
正项数列an满足:a1=3/2,a(n+1)=3an/2an+3数列bn满足bn·an=3(1-1/2^n),求bn的前n和
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证 bn是等比数列和 bn的通向公式
已知两个数列﹛an﹜,﹛bn﹜,满足bn=3^n*an,且数列﹛bn﹜的前n项和为Sn=3n-2,则数列﹛an﹜的通项公式为已知两个数列﹛an﹜,﹛bn﹜,满足bn=3^n×an,且数列﹛bn﹜的前n项和为Sn=3n-2,则数列﹛an﹜的通项
设数列{an},{bn}满足a1=1,b1=0且(高二数学,a(n+1)=2an+3bn且b(n+1)=an+2bn.(1)求证:{an+根号3bn}和{an-根号3bn}都是等比数列并求其公比;(2)求{an},{bn}的通项公式(n均为正整数)是(根号3)bn
已知等差数列{an}满足a2=3,a5=9,若数列{bn}满足b1=3,bn-1=a下标bn则bn为?
已知各项均为正数的两个数列{an}和{bn}满足:a(n+1)=(an+bn)/√(an²+bn²),n∈N+设b(n+1)=(√2)bn/an,且{an}是等比数列,求a1和b1的值
数列an及正项数列bn满足:a1=0.5,a(n+1)=1除以1+bn,an+bn=1,求bn的通项公式,比较ln(1+bn)与bn的大小
数列an,bn满足a1=b1=1,an+1-an=bn+1/bn=2,则数列ban的前10项和为
an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn
已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*求数列bn的通项公式()中的都为下标