已知方程sin^2x+cosx+k=0有实数根,求k的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:40:33
已知方程sin^2x+cosx+k=0有实数根,求k的取值范围
xT]kP+A4=ن’CFe\4VkWV֏ٺ s^/9i*

已知方程sin^2x+cosx+k=0有实数根,求k的取值范围
已知方程sin^2x+cosx+k=0有实数根,求k的取值范围

已知方程sin^2x+cosx+k=0有实数根,求k的取值范围
方程sin^2x+cosx+k=0是(sinx)^2+cosx+k=0吧?
方程可以写成1-(cosx)^2+cosx+k=0,即(cosx)^2-cosx-(k+1)=0
所以cosx=[1±√(4k+5)]/2,方程有实根,故
4k+5≥0与√(4k+5)≤1或√(4k+5)≤3,即4k+5≥0与√(4k+5)≤3同时成立,即
k≥-5/4与k≤1同时成立,所以k的取值范围是:-5/4≤k≤1.

sin²x+cosx+k=0
k=-sin²x-cosx
k=-(1-cos²x)-cosx
k=cos²x-cosx-1
k=(cosx-1/2)²-5/4
当cosx=1/2时,k取最小值-5/4
当cosx=-1时,k取最大值1
k的取值范围是:-5/4≤k≤1

设cosx = t, t在[-1,1]之间
那么sin²x = 1-cos²x = 1-t²
sin²x+cosx+k=0
可以化为: 1-t²+t+k=0
t²-t-1=k
也即(t-1/2)²-5/4 = k
当t在[-1,1]时,
t=1/2取得最小值, k=-5/4...

全部展开

设cosx = t, t在[-1,1]之间
那么sin²x = 1-cos²x = 1-t²
sin²x+cosx+k=0
可以化为: 1-t²+t+k=0
t²-t-1=k
也即(t-1/2)²-5/4 = k
当t在[-1,1]时,
t=1/2取得最小值, k=-5/4
当t=-1时取得最大值,k=1
所以,当k在[-5/4,1]中,就能保证 t在[-1,1]之间,从而x有对应值,
所以k在[-5/4,1]

收起